Gyógyszerészet 2018. május

Gyógyszerészet 2018. május

Gygyszet Borito 1805

{tab Tartalom}

Továbbképző közlemények

[accordion width=”440″]

[item title=”Szakonyi Zsolt: Természetes és szintetikus édesítőszerek kémiája – GYOGAI. 62. 259-270. 2018.”]


1. Fülöp, F., Noszál, B., Szász, G., Takácsné Novák, K.: Gyógyszerészi Kémia. Semmelweis Kiadó, Budapest 2010.

2. Tarnavölgyi, G.: Élelmezési Ip. 63, 230-235 (2009).

3. Tarnavölgyi, G.: Élelmezési Ip. 63, 217-222 (2009).

4. Schiffman, S.S., Reilly, D.A., Clark, T.B.: Physiol. Behav. 23, 1-9 (1979).

5. Ager, D.J., Pantaleone, D.P., Henderson, S.A., Katritzky, A.R., Prakash, I., Walters, D.E.: Angew. Chem. Int. Ed. 37, 1802-1817 (1998).

6. Douglas Kinghorn, A., Chin, Y.-W., Pan, L., Jia, Z.: Natural Products as Sweeteners and Sweetness Modifiers. In: Comprehensive Natural Products II. Elsevier (2010).

7. Baines, D., Seal, R. (eds): Natural food additives, ingredients and flavourings. Woodhead Publ, Oxford (2012).

8. Aidoo, R.P., Depypere, F., Afoakwa, E.O., Dewettinck, K.: Trends Food Sci. Technol. 32, 84-96 (2013).

9. Chattopadhyay, S., Raychaudhuri, U., Chakraborty, R.: J. Food Sci. Technol. 51, 611-621 (2014).

10. Shankar, P., Ahuja, S., Sriram, K.: Nutrition. 29, 1293-1299 (2013).

11. Philippe, R.N., De Mey, M., Anderson, J., Ajikumar, P.K.: Curr. Opin. Biotechnol. 26, 155-161 (2014).

12. O’Brien-Nabors, L.: Alternative sweeteners 4th Ed., CRC Press, Taylor & Francis, New York, 2016.

13. Carocho, M., Morales, P., Ferreira, I.C.F.R.: Food Chem. Toxicol. 107, 302-317 (2017).

14. Cardello, H.M.A.B., Da Silva, M.A.P.A., Damasio, M.H.: Plant Foods Hum. Nutr. 54, 119-129 (1999).

15. Fülöp, F., Lázár, L. (szerk.): Gyógyszerészi kémia gyakorlatok. Szegedi Tudományegyetem, Szeged 2015.

16. Eszterle, A.: Cukoripar. 55, 144-154 (2002).

17. Amino, Y., Kawahara, S., Mori, K., Hirasawa, K., Sakata, H., Kashiwagi, T.: Chem. Pharm. Bull. (Tokyo). 64, 1161-1171 (2016).

18. Nakamura, K., Baker, T.J., Goodman, M.: Org. Lett. 2, 2967-2970 (2000).

19. Rao, A.B., Prasad, E., Sridhar, G.R.S., Ravikumar, Y.V.L.: Adv. Biosci. Biotechnol. 03, 327-335 (2012).

20. Rao, A.B., Reddy, G.R., Ernala, P., Sridhar, S., Ravikumar, Y.V.L.: Int. J. Food Sci. Technol. 47, 2554-2560 (2012).

21. Fahlberg, G., Remsen, I.: Chem. Ber. 12, 469-473 (1879).

22. Schmidt, E., Clauss, K.: U.S. Pat. 4 625 024, 1986 [Chem. Abstr. 1986, 105, 24 281].

23. Aparnathi, K.D.: Int. J. Curr. Microbiol. Appl. Sci. 6, 1283-1296 (2017).

24. Lugasi, A.: Orv. Hetil. 157(Szuppl. 1.) 14-28 (2016).

Szakonyi, Z.: Chemistry of natural and artificial sweeteners

Nowadays artifical sweeteners have got an increasing interest in both pharmaceutical and food industry because of obesity and diabetes are major problems throughout the world. These artificial sweeteners might provide solution of the problem because of their less calorie content.

Although these additives are the most frequently studied and examined chemical substances all over the world and several of them are official in European Pharmacopoeia, many of false allegations can be found on internet about their toxic side effects. The manuscript gives a short overview about the most frequently applied natural and artificial sweeteners according their chemical classification, their natural occurance or typical industrial synthesis.


[item title=”Konta Melinda: A minőségbiztosítás új lehetőségei és eszközei: Minőségtervezés és folyamatmenedzsment  – GYOGAI. 62. 270-278. 2018.”]


1. letöltve: 2017.09.14

2. letöltve: 2018.02.

3. ICH Harmonised Tripatite Guideline, Pharmaceutical Development Q8(R2), Current Step 4 version dated August 2009, Adopted by CHMP, June 2009, issued as CHMP/ICH/167068/04.

4 . ICH Harmonised Tripatite Guideline, Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological/Biological Entities) Q11, Current Step 4 version dated 1 May 2012, Adopted by CHMP, May 2012, issued as EMA/CHMP/ICH/425213/2011.

5. ICH Harmonised Tripatite Guideline, Quality Risk Managment Q9, Current Step 4 version dated 9 November 2005, Published on the EMA website with an Explanatory Note, January 2006, issued as EXT/24235/2006.

6. ICH Harmonised Tripatite Guideline, Pharmaceutical Quality System Q10, Current Step 4 version dated 4 June, 2008 Adopted by CHMP, July 2008, issued as CHMP/ICH/214732/04.

7. Final Concept Paper Q12: Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management dated 28 July 2014 Endorsed by the ICH Steering Committee on 9 September 2014.

8. MSZ EN ISO 9001 (ISO 9001:2015).

9. MSZ ISO 31000:2015

10. MSZ ISO 31010 (IEC/ISO 31010:2009).

11. Yu, L.X., Amidon, G., Khan, M.A., Hoag, S.W., Polli, J., Raju, G.K., Woodcock, J.: The AAPS Journal, 16(4), July (2014).

12. Yu, L.X.: Pharm Res. 25(4), April (2008).

13. Kourti, T., Davis, B.: Pharmaceutical engineering, 32(4) July/August (2012).

14. Guidance for Industry PAT

A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance

15. Wenzel K.: Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépészmérnöki Kar, Mechatronika, Optika és Gépészeti Informatika Tanszék: Kísérletek tervezése Taguchi módszerrel, Műszaki könyvkiadó 2013.

16. Kemény S., Papp L., Deák A.: Statisztikai minőség-(megfelelőség-) szabályozás, Műszaki könyvkiadó 2009

17. Kemény S., Deák A.: Kísérletek tervezése és értékelése, Műszaki könyvkiadó 2002.

18. Drégelyi-Kiss Á.: Alkalmazott statisztika, Minőségügyi mérnök

Minőségügyi menedzser tanfolyam (2015).

19. ISO 22514-4 Statistical methods in process managment Capability and performance

Part 4 Process capability estimates and performance measures

20. Kane, V.E.: Journal of quality technology. 18, 41-42 (1986).

Konta M.: New opportunities and tools in the quality assurance: Quality by Design and Process Analytical Technology

Quality by Design (QbD) philosophy is a scientific and risk-based approach to the design, development and maintenance of pharmaceuticals and manufacturing processes, and product maintenance throughout its life cycle. Effective quality risk management can help to make better and more informed decisions, and will also allow official actors to provide more effective and flexible support, primarily for the benefit of patients.

A constructive change of attitude not only serves the interests of the company and the economic actors but also promotes patient and quality-oriented thinking. I addition, advanced use of enhanced control strategies has increased, integrating Process Analytical Technology (PAT) and quality improvement methods, as well as quality indicators (Cpk, Ppk), which are essential for evaluating the process. In designing quality and process, the evaluation and testing of the relevant data can be more effective using statistical tools, allowing short and long-term tracking of process capability. The change in the value of quality indicators is a feedback to the company and to the professionals about the effectiveness and success of the quality improvement measures applied.


[item title=”Tábi Tamás: Allergiás folyamatok és allergia elleni szerek – mechanizmus és hatásmechanizmus – GYOGAI. 62. 278-282 2018.”]


1. Katzung, B. G., Trevor, A. J. (eds.): Badic and Clinical Pharmacology 13th ed., McGraw-Hill Education 2015.

2. Rang, H. P., Dale, M. M., Ritter, J. M., Flower, R. J., Henderson, G. (eds): Rang and Dale’s Pharmacology 7th ed, Elsevier 2012.

3. Roberts, G., Boyle, R., Crane, J., Hogen, S. P., Saglani, S., Wickman, M., Woodfalk J. A.: Clin. Exp. Allergy 47, 1512-1525 (2017).

4. Shamji, M. H., Durham, S. R.: J. Allergy Clin. Immunol. 140, 1485-1498 (2017).

5. Martin-Orozco, E., Norte-Munoz, M., Martinez-Garcia, J.: Frontiers Pediatr. 5, 117 (2017).

6. Randall, K. L., Hawkins C. A.: Antihistamines and allergy Australian Prescriber 41, 42-45 (2018).

Tábi, T.: Allergic disorders and antiallergic drugs

Allergic disorders are characterized by increasing incidence over the last decades. This increase is connected to the altered maturation of the immune system due to the less frequent infectious diseases. The most common allergic disorder, the so called type 1 or anaphylacitc reactions are mediated by IgE antibodies. Glucocorticoids are the most effective therapies for all types of allergy by inhibiting multiple immune pathways. H1-antihistamines and leukotriene antagonists are also widely used. The first biopharmacuticals are now available for the treatment of severe allergic diseases


[item title=”Somogyi-Végh Anna, Magyar Bernadett, Vida Róbert György: Gyógyszer-gyógynövény interakciók: Reális kockázat vagy csupán rossz hírnév? – Két példa elemzése – II. rész – GYOGAI. 62. 282-289 2018.”]


Az 1-60. irodalmi hivatkozás az I. rész végén olvasható [Gyógyszerészet 62, 209-210 (2018)]


61. Saper RB: Clinical use of St. John’s wort. UpToDate (2018. 03. 02.)

62. Buckley NA, Dawson AH, Isbister GK: BMJ 348, g1626 (2014)

63. Parker V, Wong AH, Boon HS et al: Can J Psychiatry 46, 77-9 (2001)

64. DeMott K: Clin Psychiatry News 26, 28 (1998)

65. Gordon JB: Am Fam Physician 57, 950-3 (1998)

66. Lantz MS, Buchalter E, Giambanco V: J Geriatr Psychiatry Neurol 12, 7-10 (1999)

67. Barbenel DM, Yusufi B, O’Shea D et al: J Psychopharmacol 14, 84-6 (2000)

68. Waksman JC, Heard K, Jolliff H et al: J Toxicol Clin Toxicol 38, 521 (2000)

69. Dannawi M: J Psychopharmacol 16, 401 (2002)

70. Spinella M, Eaton LA: Brain Inj 16, 359-67 (2002)

71. Bonetto N, Santelli L, Battistin L et al: Cephalalgia 27, 1421-3 (2007)

72. Witharana S, Pollard A, Vaughan J: Pharm J 278, 487 (2007)

73. Reichling J, Hostanska K, Saller R: Forschende Komplementärmedizin und Klassische Naturheilkunde 10 Suppl 1, 28–32 (2003)

74. Laakmann G, Schüle C, Baghai T et al: Pharmacopsychiatry 31 Suppl 1, 54-9 (1998)

75. Barnes J, Anderson LA, Phillipson JD: J Pharm Pharmacol 53, 583-600 (2001)

76. Az OÉTI Szakértői Testülete által étrend-kiegészítőkben alkalmazásra nem javasolt növények (2018. 03. 23.)

77. Barnes J: Br J Clin Pharmacol 55, 226-33 (2003)

78. Klemow KM, Bartlow A, Crawford J et al: Chapter 11. In: Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis (2011)

79. Sakowska J, Anyzewska M, Łozak A et al: Acta Poloniae Pharmaceutica 73, 395-401 (2016)

80. Mueller SC, Uehleke B, Woehling H et al: Clin Pharmacol Ther 75, 546-57 (2004)

81. Wurglics M, Schubert-Zsilavecz M: Pharm Unserer Zeit 32, 236-41 (2003)

82. Abdel-Tawab M, Hüsch J, Schubert-Zsilavecz M et al: Pharmazeutische Zeitung 17 (2011)

83. Gillman PK: Biol Psychiatry 59, 1046-51 (2006)

84. Johne A, Schmider J, Brockmöller J et al: J Clin Psychopharmacol 22, 46-54 (2002)

85. Henderson L, Yue QY, Bergquist C: Br J Clin Pharmacol 54, 349–356 (2002)

86. et al: Br J Clin Pharmacol 58, 437-41 (2004)

87. Davis SA, Feldman SR, Taylor SL: J Altern Complement Med 20, 578-9 (2014)

88. MHRA: (2000)

89. Laif 612 mg filmtabletta alkalmazási előirat (2017. 01. 12.)

90. De Smet PAGM: Thromb Res 117, 19-24 (2005)

91. Horn JR, Hansten PD, Chan LN: Ann Pharmacother 41, 674-80 (2007)

92. Obasanjo O: (2011)

93. The Herbal Anatomical Therapeutic Chemical Classification System (2018. 03. 06.)

94. Botz L: Orvostovábbképző Szemle 18, 7-9 (2011)

95. Van Roon EN, Flikweert S, Le Comte M et al: Drug Safety 28, 1131-9 (2005)

96. Hansten PD, Horn JR, Hazlet TK: J Am Pharm Assoc (Wash) 41, 161-5 (2001)

97. Peták Zs, Csupor D: Gyógyszerészet 59, 207-212 (2015).

Somogyi-Végh A., Magyar B., Vida R. Gy.: Herb-drug interactions: real risks or just hype?

Analysis of two examples Part II.

The harmful consequences of herb-drug interactions can and should be prevented, however, screening and management of potential interactions is a challenging task for healthcare professionals. A structured analysis of two common pharmacodynamic herb-drug interactions is presented in the article: Ginkgo biloba + antithrombotics and Hypericum perforatum + antidepressants. Based on our results, the main obstacles of interaction screening are the following: (1) the lack of a comprehensive and verified database of supplementary products, (2) a lack of standardised nomenclature and classification of herbal ingredients, (3) over-citation of anecdotal or irrelevant interactions, (4) substantial discrepancies between different information sources and (5) a lack of practical recommendations and consensus on the management of interactions. Basically the well-known pitfalls of computerized interaction screening are complicated by additional factors. It is critical for example, not to automatically extrapolate the interacting properties of a given component to all products containing the herb. Evidence-based management of herb-drug interactions requires complex clinical, pharmacological and pharmacognostical expertise, all of which is part of pharmacists’ curriculum


[item title=”Lakatos Péter: A D-aminosavak biológiai jelentősége – GYOGAI 62. 294-297. 2018.”]


1. D’Aniello, A.: Brain research reviews. 53(2), 215-34 (2007).

2. Billard, J.M.: Amino acids. 43(5), 1851-60 (2012).

3. Nishikawa, T.: Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 879(29), 3169-83 (2011).

4. Wolosker, H., Dumin, E., Balan, L., Foltyn, V.N.: The FEBS journal. 275(14), 3514-26 (2008).

5. Mothet, J.P., Le Bail, M., Billard, J.M.: Journal of neurochemistry. 135(2), 210-25 (2015).

6. Pollegioni, L., Sacchi, S.: Cellular and molecular life sciences 67(14), 2387-404 (2010).

7. Verrall, L., Burnet, P.W., Betts, J.F., Harrison, P.J.: Molecular psychiatry. 15(2), 122-37 (2010).

8. Genchi, G.: Amino acids. 49(9), 1521-33 (2017).

9. Kiriyama, Y., Nochi, H.: D-Amino Acids in the Nervous and Endocrine Systems. Scientifica. 2016; 2016:6494621.

10. Fuchs, S.A., Berger, R., Klomp, L.W., de Koning, T.J.: Molecular genetics and metabolism. 85(3), 168-80 (2005).

11. Brown, J.M., Hunihan, L., Prack, M.M., Harden, D.G., Bronson, J., Dzierba, C.D. et al.: Journal of neurochemistry. 129(2), 275-83 (2014).

12. Foster, A.C., Farnsworth, J., Lind, G.E., Li, Y.X., Yang, J.Y., Dang, V. et al.: D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures. PloS one. 2016;11(6):e0156551.

Lakatos, P.: Biological relevance of D-amino acids

For decades only L-amino acids were considered natural compounds as no free D-amino acids were detected in living organisms. However, due to the development of analytical technologies, D-amino acids were not only found in significant abundance but have been connected to several biological functions in plants and animals, and even in humans. D-serine was found recently to be a co-agonist of the NMDA-receptor. Since its binding to the co-agonist site is crucial for the activation of the NMDA receptor, D-serine plays an important role in learning and memory. Changes in its extracellular concentration have been linked to several diseases of the central nervous system such as schizophrenia and ALS. D-aspartate, the most abundant D-amino acid in humans, is involved in the maturation of organs and in the regulation of hormone synthesis and release. The role of D-amino acids in physiological functions and pathologic conditions requires further investigation as altering the D-amino acid levels in humans might yield novel therapeutic strategies.




XLIII. Gyógyszeranalitikai Továbbképző Kollokvium Bükfürdő, 2018. április 19-21. – Az Erdélyi Múzeum-Egyesület tisztújító közgyűlése Kolozsvár, 2018. április 7. – Illatos bélyegen a 2018-as év gyógynövénye, a valódi levendula – Hírek Szegedről


{tab Távoktatási cikkek}

Tábi Tamás: Allergiás folyamatok és allergia elleni szerek – mechanizmus és hatásmechanizmus

Lakatos Péter: A D-aminosavak biológiai jelentősége