Gyógyszerészet 2020. április

2020. április TESZT


Mosoly a maszk mögül

Congressus Pharmaceuticus Hungaricus XVI.

Congressus Pharmaceuticus Hungaricus XVI. előzetes program

Továbbképző közlemények


1. Missale C, Nash SR et al. Dopamine receptors: From structure to function. Physiol Rev. 1998;78:189-225. – 2. Beaulieu J-M, Espinoza S et al. Dopamine receptors – IUPHAR review 13. Brit J Pharmacol. 2015;172:1-23. – 3. Prieto GA, Abonormalities of dopamine D3 receptor signaling in the diseased brain. J CNS Dis. 2017;9:1-8. – 4. Klein MO, Battagelo DS et al. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39:31-59. – 5. Rangel-Barajas C, Coronel I et al. Dopamine receptors and neurodegeneration. Aging and Disease 2015;6:349-368. – 6. Sokoloff P, Giros B et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990;347:147-156. – 7. Bouthenet ML, Souil E et al. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 1991;564:2013-219. – 8. Meador-Woodruff JH, Damak SP et al. Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacol. 1996;15:17-29. – 9. Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: Comparison with D2 receptor expressing neurons. Neuropsychopharmacol. 1999;20:60-80. – 10. Moritz AE, Free RB et al. Advances and challenges in the search for D2 and D3 dopamine selective compounds. Cell Signalling 2018;41:75-81. – 11. Diaz J, Lévesque D et al. Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neurosci. 1995;65:731-745. – 12. Perälä, J, Suvissari J et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiat. 2007;64:19-28. – 13. Millan MJ, Agid Y et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Rev Drug Discov. 2012;11:141-168. – 14. Meyer-Lindenberg A, Murphy D et al. Cognitive disfunction in psychiatric disorders: characterisctics, causes and the quest for improved therapy. Drug Discov. 2012;11:141-168. – 15. Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. The Lancet 2014;383,1677–87. – 16. Millan MJ, Fone K et al. Negative symptoms of schizophrenia: Clinical characteristics, pathophysiological substrates, experimental model and prospects for improved treatment. Eur Neuropsychophar-macol. 2014;24:759-773. – 17. Delay J, Deniker P et al. Traitment des etats d’excitation et d’agitation par une methode medicamentense derivee de l’hibernotherapie. Ann Med Psychol. 1952;267–273. – 18. Meltzer HY, Matsubara S et al. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther. 1989;238-246. – 19. Gründer G, Carlsson A. The ’atypicality’ of antipsychotics: a concept re-examined and re-defined. Nat Rev Drug Discov. 2009;8:197-202. – 20. Stahl SM. Antipsychotic Agents in: Stahl’s Essential Psychopharmacology, Neuroscientific Basis and Practical Applications, 4th Edition, Cambridge University Press, New York, 2013; 129-237p. – 21. Lieberman JA, Stroup TS. The NIM H-CATIE schizophrenia study: What did we learn? Am J Psychiatry. 2011;168, 770-775. – 22. Citrome L. Aripiprazole, brexpiprazole, and cariprazine: Not all the same. Understanding the key differences among these agents can help inform treatment decisions. Curr Psychiatry 2018;17:35-44. – 23. Howes OD, Kapur S. A neurobiological hypothesis for the classification of schizophrenia: type A (hyperdopaminergic) and type B (normodopaminergic). Brit J Psychiatry 2014;205:1–3. – 24. Ellenbroek BA, Cesura M. Antipsychotics and the dopamine-serotonin connection. Top Med Chem. 2015;13:1–50. – 25. Howes O, McCutheon R et al. Glutamate and dopamine in schizophrenia. An update for the 21st century. J Psychopharmacol. 2015;29:97-115. – 26. Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction and schizophrenia. Neuropsychopharmacol. 2015;40:190-206. – 27. Carlsson A, Lindquist M. Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol. 1963;20:140–144. – 28. van Rossum J. The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Brill H, Cole J et al. (Eds.), Neuro-psychopharmacology, Proceedings 5th Collegium Internationale Neuropsychopharmacologicum. Excerpta Medica, Amsterdam, 1967; 321– 329 p. – 29. Madras BK History of discovery of the antipsychotic dopamine D2 receptor: A basis for the dopamine hypothesis of schizophrenia. J Hist Neurosci. 2013;22:62-78. – 30. Baba S, Enomoto T et al. Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range. J Pharmacol Sci. 2015;127:326-331. – 31. Maeda K, Sugino H et al. Brexpiprazole I: In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 2014;350:589–604. – 32. Heusler P, Martel JC et al. In vitro profile of the new antipsychotic, F17464, at recombinant human neurotransmitte receptors. Eur Neuropsychopharmacol. 2016;26 (S2):S490-S491. – 33. Kiss B, Horváth A et al. Cariprazine (RGH-188), a dopamine D3 receptor-preferring D3/D2 dopamine receptor antagonist-partial agonist antipsychotic candidate: In vitro and neurochemical profile. J Pharmacol Exp Ther. 2010;333:328–340. – 34. Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons Science 1975;188:1217–1219. – 35. Seeman P. Brain dopamine receptors. Pharmacol Rev. 1980;32:229-313. – 36. Seeman P. Targeting the dopamine D2 receptor in schizophrenia. Expt Opin Ther Targets 2006;10(4):515-531. – 37. Kapur S, Mamo D. Half century of antipsychotics and still a central role for dopamine D2 receptors. Progr Neuro-Psychopharmacol Biol Psychiatry 2003;27:1081-1090. – 38. Ginovart N, Kapur S. Role of dopamine D2 receptors for antipsychotic activity. in Geyer MA and Gross G. (eds.) Novel Anti-schizophrenia Treatments. Handbook of Experimental Pharmacology 2012; p. 167-210. – 39. Seeman P. Schizophrenia and dopamine receptors. Eur Neuropsychopharmacol. 2013;23:999-1009. – 40. Nord M, Farde L. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther. 2011;17:97-103. – 41. Yokoi F, Gründer G et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14579): a study using positron emission tomography and [11C]-raclopride. Neuropsychopharmacol. 2002;27:249-259. – 42. Kegeles LS, Slifstein M et al. Dose–occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]Fallypride Neuropsychopharmacol. 2008;33:3111–3125. – 43. Girgis, RR, Slifstein M et al. Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [11C]-(+)-PHNO. Psychopharmacol. 2016;233:3503–3512. – 44. Girgis R.R, Forbes A et al. A positron emission tomography occupancy study of brexpiprazole at dopamine D2 and D3 and serotonin 5-HT1A and 5-HT2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacol. 2019;45:786–7927. – 45. Van Tol HH, Bunzow JR et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991;350:610-614. – 46. Bristow LJ, Kramer MS et al. Schizophrenia and L-745,870, a novel dopamine D4 receptor antagonist. TIPS 1997;18:186-188. – 47. Abekawa T, Honda M et al. Effects of NRA0045, a novel potent antagonist at dopamine D4, 5-HT2A, and α1 adrenaline receptors, and NRA0160 a selective D4 receptor antagonist, on phencyclidine-induced behavior and glutamate release in rats. Psychopharmacol. 2003;169:247-256. – 48. Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011;11:59-67. – 49. Celada P, Bortolozz A et al. Serotonin 5-HT1A receptors as targets to treat psychiatric disorders: Rationale and current status of research. CNS Drugs 2013;27:703-716. – 50. Kehne JH, Baron BM et al. Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J Pharmacol Exp Ther. 1996;277:968-981. – 51. Grauer SM, Pulito VL et al. Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther 2009;331(2):574-90. – 52. Kinon BJ, Zhang L et al. A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharma-col. 2011;31:349-358. – 53. Alberati D, Moreau JL et al. Glycine reuptake inhibitor RG1678: A pharmacological charac-terization of an investigational agent for the treatment of schizophrenia. Neuropharmacol. 2012;62:1152-1161. – 54. Chien EY, Liu W et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist, Science 2010;330:1091-195. – 55. Svensson K, Carlsson A et al. Behavioral and neurochemical data suggest functional difference between dopamine D2 and D3 receptors. Eur J Pharmacol. 1994;263(3)235-243. – 56. Sigala S, Missale C et al. Opposite effects of dopamine D2 and D3 receptors on learning and memory in the rat. Eur J Pharmacol. 1999;336:107-112. – 57. Santesso DL, Evins AE et al. Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function. Hum Brain Mapp. 2009;30:1963-1967. – 58. Watson DJG, Loiseau F et al. Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: A key role for the prefrontal cortex. Neuropsychopharmacol. 2012;37:770-786. – 59. Kagaya T, Yonaga M et al. Dopamine D3 agonists disrupt social behavior in rats. Brain Res. 1996;721:229-231. – 60. Simpson EH, Winiger V et al. Selective overexpression of dopamine D3 receptors in the striatum disrupts motivation but not cognition. Biol Psychiatry 2014;76:823-831. – 61. Reavill C, Taylor SG et al. Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011-A. J Pharmacol Exp Ther. 2000;294:1154-1165. – 62. Redden L, Rendenbach-Mueller B et al. A double-blind, randomized, placebo-controlled study of the dopamine D3 receptor antagonist ABT-925 in patients with acute schizophrenia. J Clin Psychopharmacol. 2011;31:221–225. – 63. Bardin L, Kleve MS et al. Antipsychotic-like vs cataleptogenic actions in mice of novel antipsychotics having D2 antagonist and 5-HT1A agonist properties. Neuropsychopharmacol. 2006;31:1869-1879. – 64. Millan MJ, Gressier H et al. The dopamine D3 receptor antagonist, (+)-S 14297, blocks the cataleptic properties of haloperidol in rats. Eur J Pharmacol. 1997;321:R7-R9. – 65. Gyertyán I, Sághy K. The selective dopamine D3 receptor antagonists, SB-277011-A and S 33084 block haloperidol-induced catalepsy in rats. Eur J Pharmacol. 2007;572:171-174. – 66. Lacroix LP, Hows ME et al. Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neuro-trans-mission in the rat anterior cingulate cortex. Neuropsychopharmacol. 2003;28:839–849. – 67. Millan MJ, Svenningsson P et al. S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]-benzopyrano[3,4-c]pyrrol-2(3 H)-yl)-ethyl]phenylacetamide], a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent. II. A neurochemical, electro-physiological and behavioral characterization in vivo. J Pharmacol Exp Ther. 2008;324:600–611. – 68. Gross G, Drescher K. The role of dopamine D3 receptors in antipsychotic activity and cognitive functions. in Geyer MA and Gross G. (eds.) Novel Anti-schizophrenia Treatments. Handbook of Experimental Pharmacology, 2012;213: p. 167-210. – 69. Huang M, Kwon S et al. Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement. Pharmacol Biochem Behav. 2015;138:49–57. – 70. Ashby CR, Minabe Y et al. Acute and chronic administration of the selective D3 receptor antagonist SB-277011-A alters activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. J Pharmacol Exp Ther. 2000;294:1166–1174. – 71. Levant B. The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol Rev. 1997;49:231-252. – 72. Leggio GM, Bucolo C et al. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther. 2016;165:164-177. – 73. Sokoloff P, Andrieux M et al. Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol. 1992;225:331-337. – 74. Kim K-M, Valenzano KJ et al. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and ß-arrestins J Biol Chem. 2001;276:37409-37414. – 75. Ahlgren-Beckendorf JA, Levant B. Signaling mechanism of the dopamine D3 receptor. J Recept Signal Transduct. 2004;24(3):117-130. – 76. Beaulieu JM, Tirotta E et al. Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci. 2007;27:881-885. – 77. Beom S, Cheong D et al. Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J Biol Chem. 2004;279:28304-28314. – 78. Jin M, Min C et al. Multiple signaling routes involved in the regulation of adenylyl cyclase and extracellular regulated kinase by dopamine D2 and D3 receptors. Pharmacol Res. 2013;67:31-41. – 79. Peineau S, Bradley C et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol 2008;153 Suppl 1:S428-37. – 80. Mannoury la Cour C, Salles MJ et al. Signaling pathways leading to phosphorylation of Akt and GSK-3beta by activation of cloned human and rat cerebral D2 and D3 receptors. Mol Pharmacol. 2011;79:91-105. – 81. Collo G, Zanetti S et al. Dopamine D3 receptor-preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signal-regulated kinase phosphorylation. Eur J Neurosci. 2008;28:1231-1240. 82. Levesque D, Diaz J et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-NN-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci. 1992;89:8155-8159. – 83. Pugsley TA, Davis MD et al. Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther. 1995;275:1375-1366. – 84. Mierau J, Schneider FJ et al. Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. Eur J Pharmacol. 1995;290(1):29-36. – 85. Gross G, Drescher K. The role of dopamine D3 receptors in antipsychotic activity and cognitive functions. in: Geyer MA and Gross G. Novel Antipsychotic Treatments. Handbook of Experimental Pharmacology Vol. 213, Springer Verlag Berlin Heidelberg, 2012; p 167-210. – 86. Kassel S, Schwed JS et al. Dopamine D3 agonists as pharmacological tools. Eur Neuropsychopharmacol. 2015;25:1480-1499. – 87. Mogilnicka E, Klimek V. Drugs affecting dopamine neurons and yawning behavior. Pharmacol Biochem Behav. 1977;7:303–305. – 88. Kurashima M, Yamada K, et al. Effects of putative D3 receptor agonists, 7-OH-DPAT, and quinpirole, on yawning, stereotypy, and body temerature in rats. Pharmacol Biochem Behav. 1995;52:503-508. – 89. Collins GT, Witkin JM et al. Dopamine agonist-induced yawning in rats: a dopamine D3 receptor-mediated behavior. J Pharmacol Exp Ther. 2005;314: 310-319. – 90. Collins GT, Newman AH et al. Yawning and hypothermia in rats: Effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacol. 2007;193:159-170. – 91. Kagaya T, Yonaga M et al. Dopamine D3 agonists disrupt social behavior in rats. Brain Res. 1996;721:229-232. – 92. Geneste H, Backfissch, G et al. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: 1H-Pyrimidin-2-on derivatives. Bioorg Med Chem Lett. 2006;16:490-494. – 93. Vangveravong S, McElveen E et al. Synthesis and characterization of selective dopamine D2 receptor antagonists. Bioorg Med Chem. 2006;14: 815–825 – 94. Sokoloff P, Diaz J et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets. 2006;5:25-43. – 95. Gross G, Wicke K et al. Dopamine D3 receptor antagonism – Still a therapeutic option for the treatment of schizophrenia. Naunyn-Schmiedeberg’s Arch Pharmacol. 2013;386:155-166. – 96. Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci. 2017;45(1):2-19. – 97. Kiss B, Horti F et al. Cariprazine, a D3/D2 dopamine receptor partial agonist antipsychotic, displays greater D3 receptor occupancy in vivo. compared with other antipsychotics. Schizophr Res. 2012,136 (Suppl 1):190. – 98. Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychosis. 2010;4(1):56-73. – 99. Shahid M, Walker GB et al. Asenapine: a novel psychopharmacologic agent with unique human receptor signature. J Psychopharmacol. 2009;23:65-73. – 100. Reavill C, Taylor SG et al. Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011-A. J Pharmacol Exp Ther. 2000;294:1154-1165. – 101. Millan MJ, Dekeyne AM et al. S33084, a novel, potent, selective and competitive antagonist at dopamine D3 receptors: II. Functional and behavioral profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther. 2000;293:1063-1073. – 102. Gross G, Bialojan S et al. Evaluation of D3 receptor antagonists. Eur Neuro-psychopharmacol., 1997;7:S120. – 103. Geneste H, Backfisch G et al. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: Quinolin(di)one and benzazepin(di)one derivatives. Bioorg Med Chem Lett. 2006;16:658-662. – 104. Searle G, Beaver JD et al. Imaging dopamine D3 receptors in human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist. Biol Psychiatry. 2010;68:392-399. – 105. Pilla M, Perachon S et al. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptors agonist. Nature. 1999;400:371-375. – 106. Gross G, Wicke K et al. Dopamine D3 receptor antagonism – still a therapeutic option for the treatment of schizophrenia. Naunyn-Schmiedeberg’s Arch Pharmacol. 2013;386:155-166. – 107. Le Foll B, Collo G et al. Dopamine D3 receptor ligands for drug addiction treatment: Update on recent findings. Progr Brain Res. 2014;211:255-275. – 108. Newman A, Blaylock BL et al. Medication discovery for addiction: Translating the dopamine D3 receptor hypothesis. Biochem Pharmacol. 2012;84:882-890.

Kiss B., Laszlovszky I., Krámos B.: Dopamine D3 receptors and antipsychotics – Aspects of mechanism of action and pharmacological properties – part I.

Disturbance of brain dopaminergic system is thought to play major role in the symptoms of schizophrenia (positive, negative symptoms and cognitive deficits). Current antipsychotics display affinities to wide range of receptors but their primary target in schizophrenia therapy are thought to be dopamine D2 receptors. Dopamine D3 receptors which belong to the D2-type dopamine receptor family have special distribution in the brain and play important roles in several CNS functions. Dopamine D2– and D3-receptors demonstrate high degree of structural and functional similarity. Most of the antipsychotics display similar in vitro affinity for dopamine D2 as well as for dopamine D3 receptors. Compounds (antagonists, partial agonists) with high affinity and selectivity toward D3 receptors were developed but did not result in clinically useful antipsychotics. Current antipsychotics demonstrate dopamine D2 occupancy in the living brain but only few of them (e.g.
cariprazine and blonanserin) produced meaningful dopamine D3 receptor occupancy. We pointed out some factors (e.g. in vitro affinity for D3 receptors, endogenous concentration of dopamine, in vivo antagonism at dopamine D2 receptors) which may explain the lack of D3 occupancy of some antipsychotics. Antipsychotics with high and preferential affinity for D3 receptors, beside their affinity for dopamine D2 receptors (exemplified with cariprazine), may possess profile useful for the treatment of not only schizophrenia but for other psychiatric conditions, too. 


1. Pilling J. Orvosi kommunikáció a gyakorlatban. Budapest: Medicina Könyvkiadó; 2018. 205-212 p. – 2. World Health OrganizationPreventing suicide: A global imperative. WHO; 2018. – 3. Yoshimasu K, Kiyohara C et al. Suicidal risk factors and completed suicide: meta-analyses based on psychological autopsy studies. Environ Health Prev Med. 2008;13(5):243-56. – 4. Scheerder G, De Coster I et al. Pharmacists’ role in depression care: a survey of attitudes, current practices, and barriers. Psychiatr Serv. 2008;59(10):1155-60. – 5. Pronk M, Blom L et al. Community pharmacy and patient-oriented activities: the Dutch case. Patient Educ Couns. 2002;46(1):39-45. – 6. Susánszky É, Szántó Zs. Magyar lelkiállapot, 2013. Budapest: Semmelweis Kiadó; 2013. – 7. Kalmár S, Németh A, Rihmer Z. Az öngyilkosság orvosi szemmel. Budapest: Medicina Könyvkiadó; 2012. – 8. Tóth MD. Az öngyilkossági kísérletezés pszichoszociális háttértényezőinek vizsgálata [PhD értekezés]. [Budapest]: Semmelweis Egyetem; 2016. – 9. Ringel E. The presuicidal syndrome. Suicide Life Threat Behav. 1976;6(3):131-49. – 10. Coppens E, Van Audenhove C et al. Effectiveness of community facilitator training in improving knowledge, attitudes, and confidence in relation to depression and suicidal behavior: results of the OSPI-Europe intervention in four European countries. J Affect Disord. 2014;165:142-50. – 11. Scheerder G, De Coster I et al. Community pharmacists’ attitude toward depression: a pilot study. Res Social Adm Pharm. 2009;5(3):242-52. – 12. Scheerder G, Van Audenhove C et al. Community and health professionals’ attitude toward depression: a pilot study in nine EAAD countries. Int J Soc Psychiatry. 2011;57(4):387-401. – 13. Capp K, Deane FP et al. Suicide prevention in Aboriginal communities: application of community gatekeeper training. Aust N Z J Public Health. 2001;25(4):315-21. – 14. Carpenter DM, Lavigne JE et al. A review of suicide prevention programs and training policies for pharmacists. J Am Pharm Assoc. 2018;58(5):522-529. – 15. Tierney RJ. Suicide intervention training evaluation: a preliminary report. Crisis. 1994;15(2):69-76. – 16. Griffiths KM, Christensen H et al. Effect of web-based depression literacy and cognitive-behavioural therapy interventions on stigmatising attitudes to depression: randomised controlled trial. Br J Psychiatry. 2004;185:342-9.

Fritz Á., Tóth M.D., Susánszky É.: Pharmacists as gate-keepers in recognizing depression and preventing suicide – part I.

Hungary has one of the highest suicide rates in the European Union. Since depression is a major risk factor for suicide, the detection and treatment of this mental disorder is an effective way of preventing suicidal behavior. In daily practice, pharmacists often meet patients who are at higher risk of mental health problems. Therefore, as gatekeepers, they can play a key role in preventing depression and suicide. The first part of our article draws pharmacists’ attention to depression and suicide to enable better recognition of verbal and non-verbal signs of these disorders. In the second part, the results of a pilot study are presented. The purpose of the study was to assess the level of stigmatization among pharmacists against depression and their confidence in communication with depressed patients.

Brantner Antal Ifjúsági Nívódíj Pályázat


1. Szydlarska D, Machaj M et al. History of discovery of polycystic ovary syndrome. Adv Clin Exp Med 2017;26(3), 555-558.2. Stein IF, Cohen MR, et al. Results of bilateral ovarian wedge resection in 47 cases of sterility; 20 year end results; 75 cases of bilateral polycystic ovaries. Am J Obstet Gynecol. 1949;58(2):267-74. 3. Lizneva D, Kirubakaran R et al. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: systematic review and meta-analysis. Fertil Steril. 2016;106(6):1510-1520.4. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004 Jan;81(1):19-25.5. Azziz R, Woods KS et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004 ;89(6), 2745-2749.6. Lakatos P, Speer G, szerk. Policisztás ovarium szindróma. Budapest: Semmelweis Kiadó; 2009. 105–111. p.7. Langmár Z.  A polycystás ovarium szindróma diagnosztikája és terápiája. Orvosi Hetilap 2010;151(14), 584–586. 8. Glueck CJ, Dharashivkar S et al. Obesity and extreme obesity, manifest by ages 20-24 years, continuing through 32-41 years in women, should alert physicians to the diagnostic likelihood of polycystic ovary syndrome as a reversible underlying endocrinopathy. Eur J Obstet Gynecol Reprod Biol. 2005;122(2):206-12. 10. Tziomalos K, Dinas K. Obesity and Outcome of Assisted Reproduction in Patients With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne). 2018 Apr 4;9:149.11. Lazaridou S, Dinas KK, Tziomalos, K. Prevalence, pathogenesis and management of prediabetes and type 2 diabetes mellitus in patients with polycystic ovary syndrome. Hormones (Athens), 2017;16(4), 373-380.12. Hart R, Doherty DA. The potential implications of a PCOS diagnosis on a woman’s long-term health using data linkage. J Clin Endocrinol Metab. 2015;100(3):911-9.13. Patel S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol. 2018;182:27-36.13. Legro RS, Arslanian SA et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565-92. 14. Misso M, Boyle J, Norman R, Teede H. Development of evidenced-based guidelines for PCOS and implications for community health. Semin Reprod Med. 2014;32(3):230-40.15. Saleem F, Rizvi SW. New Therapeutic Approaches in Obesity and Metabolic Syndrome Associated with Polycystic Ovary Syndrome. Cureus. 2017;9(11):e1844.16. Yancy WS Jr, Olsen MK et al. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med. 2004;140(10):769-77.17. Boden G, Sargrad K et al. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med. 2005 Mar 15;142(6):403-11.18. Mavropoulos JC, Yancy WS et al. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab (Lond). 2005;2:35.19. Kurzthaler D, Hadziomerovic-Pekic D et al. Metformin induces a prompt decrease in LH-stimulated testosterone response in women with PCOS independent of its insulin-sensitizing effects. Reprod Biol Endocrinol. 2014;12:98.

Harda K.*, Halmos G.**: What all women are afraid of – Polycystic ovary syndrome

Polycystic ovarian syndrome (PCOS) is the most common cause of gynecological endocrine disorder and is today the leading cause of infertility in women of childbearing age. Because of its name, it is primarily ovarian disease, but due to its diverse symptoms, it can affect multiple organs, requiring complex treatment.

Aktuális oldalak


1. Gorbalenya AE, Baker SC et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. bioRxiv 2020.02.07.937862; doi: 2.WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020.—11-march-2020 (2020.03.31.)3. 40/2020 (III.11.) Kormányrendelet veszélyhelyzet kihirdetéséről. (2020.03.31.) 4. WHO Coronavirus disease (COVID-19) Situation Dashboard. (2020. 04. 03.) 5. Emberi Erőforrások Minisztériuma. A 2020. évben azonosított új koronavírus (SARS-CoV-2) okozta fertőzések (COVID-19) megelőzésének és terápiájának kézikönyve. (2020.04.01.)6. – Centers for Disease Control and Prevention . Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). (2020.04.02.)7. Warren TK, Jordan R et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381-5. – 8. Lo MK, Jordan R et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7:43395.9. Gilead Sciences Update On The Company’s Ongoing Response To COVID-19. (2020.04.01.)10. Gyires K, Fürst Zs, szerk. Farmakológia és farmakoterápia I. Budapest: Medicina Könyvkiadó; 2007. 897-898 p.11. (2020.04.01.)12. European Medicines Agency. COVID-19: chloroquine and hydroxychloroquine only to be used in clinical trials or emergency use programmes. (2020.04.01.)13. (2020.04.02.)14. Smith T, Bushek J et al. COVID-19 Drug Therapy – Potential Options. (2020.04.02.)15. (2020.04.02.)16. Az Európai Gyógyszerügynökség szerint folytatható a magas vérnyomás, a vese- és a szívbetegség eddigi gyógyszeres terápiája a COVID-19 világjárvány ideje alatt – 2020.03.27., (2020.04.02.)


1. Al-Jundi A, Sakka S. Critical Appraisal of Clinical Research. J Clin Diagn Res. 2017;11(5):JE01-JE05.2. CASP Appraisal Checklists. (2020.03.27.) 3. WHO. Coronavirus disease (COVID-19) Pandemic. (2020.03.27.)4. Jonhs Hopkins Coronavirus Resource Center – Johns Hopkins University Center for Systems Science and Engineering. Coronavirus COVID-19 Global Cases On-line Map. 2020. (2020.03.17.) 5. Koronavírusjárvány: Tanulságok az egészségfejlesztési szakemberek számára. (Szerkesztőségi közlés) Egészségfejlesztés. 2020;61(1). doi: 10.24365/ef.v61i1.5756. Centers for Disease Control and Prevention. Evaluating and Testing Persons for Coronavirus Disease 2019 (COVID-19) (Revision 24 March 2020). (2020.03.27.)7. Cochrane Library. Coronavirus (COVID-19): evidence relevant to critical care – 20 March 2020. (2020.03.27.)8. Nemzeti Népegészségügyi Központ. Eljárásrend a 2020. évben azonosított új koronavírussal kapcsolatban, 2020. 03. 16. (2020.03.27.)9. Centers for Disease Control and Prevention. Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Persons for Coronavirus Disease 2019 (COVID-19). CDC (2020.03.27.)10. BMJ Best Practice. Coronavirus disease (COVID-19). (2020.03.27.) – 11. European Centre for Disease Prevention and Control. Outbreak of novel coronavirus disease 2019 (COVID-19): increased transmission globally – fifth update. (2020.03.27.)12. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA 2020. Feb. 24. 13. Shah A, Kashyap R et al. Guide to Understanding the 2019 Novel Coronavirus. Mayo Clin Proc. 2020;95(4):646-652. 14. Li LQ, Huang T et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020. Már 12. doi: 10.1002/jmv.2575715. Oggetto: polomonite da COVID-19 indicazioni relative alla specialitá medicinale RoActemra (tocilizumab) [Szicilíai Egészségügyi Minisztérium. Off-label engedélyezési irat tüdőgyulladás okozta COVID 19 kezelés engedélyezéséhez tocilizumabbal, 2020. 03. 11.] Olasz. (2020.03.27.)16. Liang T. szerk. Handbook of COVID-19 Prevention and Treatment. Nicastri E, Petrosillo N et al. National Institute for the Infectious Diseases „L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep. 2020 Mar 16;12(1):8543.18. American Society of Health-System Pharmacists. Assessment of Evidence for COVID-19-Related Treatment: Uptated 24 March 2020.  (2020.03.27.) – 19. Cao B, Wang Y et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Eng J Med, 2020 már. 18. doi: 10.1056/NEJMoa200128220. ASHP Twitter közösségi oldal. European Assiociation of Hospital Pharmacist. COVID-19 Resource Centre. (2020.03.27.) – 22.  Zhou F, Yu T et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020. már. 11. doi: 10.1016/S0140-6736(20)30566-323. Live Science Staff. Treatments for COVID-19: Drugs being tested against the coronavirus, 23-03-2020. An experimental peptide could block Covid-19. (2020.03.27.)25. EMMI Egészségügyi Szakmai Kollégium Tagozatainak ajánlása a COVID-19 ellátásrenddel kapcsolatban. (2020.03.27.)26. World Health Professions Alliance. The world’s health professionals are calling for governments to support healthcare staff in the battle against Covid-19. (2020.03.27.)27. International Pharmaceutical Federation. FIP releases substantial update to COVID-19 guidelines for pharmacists around the world. (2020.03.27.) – 28. European Medicines Agency. Human Regulatory. Coronavirus disease (COVID-19)’s-new-section (2020.03.27.)29. Országos Gyógyszerészeti és Élelmezés-egészségügyi Intézet. Koronavírus. (2020.03.27.)30. Medicines and Healthcare products Regulatory Agency. The Yellow Card scheme: guidance for healthcare professionals, patients and the public. (2020.03.27.)31. National Institute for Health and Care Excellence. COVID-19 rapid guideline: critical care in adults. (2020.03.27.)32. [Közös Fellépés a Koronavírus Megelőzéséért és Ellenőrzéséért kínai szakmai csoport. Koronai vírusos járványhelyzetben alkalmazott sürgősségi pszichológiai válsághelyzet-beavatkozásának alapelveis] Kínai. (2020.03.27.)33. Jianbo L, Simeng M et al. Factors Associated With Mental Health Outcomes Among Health Care Workers Exposed to Coronavirus Disease 2019. JAMA Network Open. 2020;3(3):e203976.34. Centers for Disease Control and Prevention. Steps Healthcare Facilities Can Take Now to Prepare for Coronavirus Disease 2019 (COVID-19). 2F2019-ncov% 2Fhealthcare-facilities%2Fsteps-to-prepare.html (2020.03.27.)35. International Organization for Stan-dardization. ISO 22310:2019 standard Security and resilience -Business continuity management systems – Requirements. (2020.03.27.) – 36. Európai Bizottság. Koronavírus-járvány elleni válaszintézkedések. (2020.03.27.)37. European Centre for Disease Prevention and Control. Health emergency preparedness  for imported cases of  high-consequence infectious  diseases – Operational checklist for country preparedness planningin the EU/EEA countries (2020.03.27.) – 38. Julie Highfield klinikai pszichológus szakmai Twitter oldala. (2020.03.27.)39. Intensive Care Society. Wellbeing Resource Library (2020.03.27.)40. LiveScience Staff. Infographic for kids: Anatomy of the coronavirus (2020.03.27.)41. NeuroScience szakmai Twitter oldal. (2020.03.27.)42. Centers for Disease Control and Precvention. Health Alert Network (HAN) (2020.03.27.)43. Wilder-Smith A, Chiew CJ et al. Can we contain the COVID-19 outbreak with the same measures as for SARS? The Lancet Infect Dis. 2020. Már 5. doi: 10.1016/S1473-3099(20)30129-8. – 44. Johnson HC, Gossner CM et al. Potential scenarios for the progression of a COVID-19 epidemic in the European Union and the European Economic Area, March 2020. Euro Surveill. 2020;25(9). doi: 10.2807/1560-7917.

Becskeházi-Tar J.: The emergency preparadness model for hospital pharmacy based on the evaluation of the COVID-19 epidemic preparedness experience