Gyógyszerészet 2020. május

2020. május TESZT

Tartalom

Továbbképző közlemények

A pszichiátriai kórképek és ezen belül a szkizofrénia hatékony gyógyszeres kezelése több mint hatvan éve áll a gyógyszerkutatás homlokterében. Az elmúlt évtizedekben számos hatásmechanizmus-megközelítéssel próbálkoztak a fejlesztők és értek el eredményeket a kórkép tüneteinek enyhítésében. Az elmúlt húsz év hazai eredeti gyógyszerkutatásának kiemelkedő sikere a kariprazin, amely egy új atípusos antipszichotikum és amely az eddigi megközelítésektől különböző hatásmechanizmusa révén eltérő hatáskvalitást és funkcionális javulást hozott a pszichiátriai kórképben. Az új biológiai célpont a dopamin D3-receptor altípusa. Lapunk egy korábbi száma 2016-ban (Domány Gy, Krámos B. Dopamin D3-receptoron ható atípusos antipszichotikumok – szerkezet-hatás összefüggések. Gyógyszerészet. 2016;60(6):334-8.) foglalkozott már ennek a receptor altípusnak a szerkezet-hatás összefüggéseivel, a kariprazinról pedig 2015-ben (Laszlovszky I, Németh Gy. Kariprazin – mérföldkő a magyar gyógyszerkutatásban és egyedülálló lehetőség a negatív szimptómás skizofrén betegek kezelésére. Gyógyszerészet. 2015;59(11):643-6.) jelent meg közlemény. A most megjelenő, széleskörű összefoglaló a dopamin D3-receptor altípusnak a farmakológiai és hatásmechanizmus rejtelmeibe kíván bepillantást adni az olvasónak. Kiss Béla és munkatársainak közleményét terjedelmi okokból két részben közöljük. Az első rész a Gyógyszerészet 2020. áprilisi számában olvasható.

IRODALOM

109. Köhler C, Hall H et al. Specific in vitro and in vivo binding of 3H-raclopride a potent substituted benzamide drug with high affinity for dopamine D2 receptors in the rat brain. Biochem Pharmacol. 1985;51:2251-2259.110. Ross S, Jackson DM. Kinetic properties of the accumulation of [3H]raclopride in the mouse brain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol. 1989;341:6-12.111. Leysen JE, Janssen PMF et al. In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotics risperidone and ocaperidone. Mol Pharmacol. 1992;41:494-508.112. Martin, GE, Williams M et al. Selectivity of (1)-4-propyl-9-ydroxynaphthoxazine (+)-PHNO for dopamine receptors in vitro and in vivo. J Pharmacol Exp Ther. 1985;233:395-401.113. Seeman P. Ulpian C et al. Dopamine receptors labelled by PHNO. Synapse. 1993;14:254-262.114. Nobrega JN, Seeman P. Dopamine D2 receptors mapped in rat brain with [3H](+)PHNO. Synapse. 1994;17:167-172.115. McCormick PN, Kapur S et al. The antipsychotics olanzapine, risperidone, clozapine, and haloperidol are D2-selective ex vivo but not in vitro. Neuropsychopharmacol. 2010;35:1826-1835.116. McCormick PN, Wilson VS et al. Acutely administered antipsychotics are highly selective for dopamine D2 over D3 receptors. Pharmacol Res. 2013;70:66-70.117. Kiss B, Horti F et al. In vitro and in vivo comparison of [3H](+)-PHNO binding and [3H]raclopride binding to rat striatum and lobes 9 and 10 of the cerebellum: A method to distinguish dopamine D3 from D2 receptor sites. Synapse. 2011;65:467-478.118. Gyertyán I, Kiss B et al. Cariprazine (RGH-188), a potent D3/D2 dopamine receptor partial agonist, binds to dopamine D3 receptors in vivo and shows antipsychotic-like and procognitive effects in rodents. Neurochem Int. 2011;59:925-935.119. Oka M, Noda Y et al. Pharmacological profile of AD-5423, a novel antipsychotic with both potent dopamine-D2 and serotonin-S2 antagonist properties. J Pharmacol Exp Ther. 1993;264:158-164.120. Davoodi N, te Riele P et al. (2014) Examining dopamine D3 receptor occupancy by antipsychotic drugs via [3H]7-OH-DPAT ex vivo autoradiography and its cross-validation via c-fos immunohistochemistry in the rat brain. Eur J Pharmacol. 2014;740:669-675.121. Wilson AA, McCormick P et al. Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-nappto[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48:4153-4160.122. Narendran R, Slifstein M et al. Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C] is a D3 receptor preferring agonist in vivo. Synapse. 2006;60:485-495.123. Ginovart N, Galineau L et al. Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J Neurochem. 2006;97:1089-1103.124. Ginovart N, Willeit M et al. Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J Cereb Blood Flow Metab. 2007;27:857-871.125. Rabiner UE, Slifstein M et al. In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: Studies in non-human primates and trangenic mice. Synapse. 2009;63:782-793.126. Searle G, Beaver JD et al. Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist. Biol Psychiatry. 2010;68:392-399.127. Tziortzi AC, Searle GE et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: Dissection of D3 signal and anatomy. Neuroimage. 2010;54264-277.128. Gallezot JD, Beaver D et al. Affinity and selectivity of [11C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse. 2012;66:489-506.129. Finnema SJ, Bang-Andersen B et al. Current state of agonist radioligands for imaging of brain dopamine D2/D3 receptors in vivo with positron emission tomography. Curr Top Med Chem. 2010;10:1477-1498.130. Le Foll B, Wilson AA et al. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol. 2014;5:161. doi: 10.3389/fphar.2014.00161.131. Wagner HN, Burns HD et al. Imaging dopamine receptors in the human brain by positron tomography. Science. 1983;221:1264-1266.132. Farde L. The advantage of using positron emission tomography in drug research. TiNS 1996;19:211-214.133. Booij J, Tissingh G et al. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med. 1999;26:171-182.134. Booij J, van Amelsvoort T. Imaging tools to investigate psychoses and antipsychotics. in: Gross G and Geyer M.A. (eds) Current Antipsychotics, Handbook of Experimental Pharmacology 2012; pp. 229-337.135. Prante O, Maschauer S et al. Radioligands for the dopamine receptor subtypes. J Label Compd Radiopharm. 2013;56:130-148.136. Mach RH, Luedtke RR. Challenges in the development of dopamine D2– and D3-selective radiotracers for PET imaging studies. J Label Compd Radiopharm. 2018;61, 291-298.137. Kapur S, Zipursky RB et al. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry. 1999;156:286-293.138. Kapur S, Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry. 2001;158:360-369.139. Graff-Guerrero A, Mamo D et al. The effect of antipsychotics on the high-affinity state of D2 and D3 receptors. Arch Gen Psychiatry. 2009;66:606-615.140. Mizrahi R, Ogid O et al. Effects of antipsychotics on D3 receptors: A clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO. Schizophr Res. 2011;131:63-68.141. Tateno A, Sakayori T et al. Comparison of Dopamine D3 and D2 receptor occupancies by a single dose of blonanserin in healthy subjects: a positron emission tomography study with [11C]-(+)-PHNO. Int J Neuropsychopharmacol. 2018;21:522-527.142. Micheli F, Arista L et al. 1,2,4-Triazolyl azabicyclo[3.1.0]hexanes: A new series of potent and selective dopamine D3 receptor antagonists. J Med Chem. 2010;53:374-391.143. Mugnaini M, Iavarone L et al. Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. Neuropsychopharmacol. 2013;38:302-312.144. Davies MA, Sheffler DJ et al. Aripiprazole: A novel atypical antipsychotic drug with a uniquely robust pharmacology. CNS Drug Reviews. 2004;10:317-336.145. de Bartolomeis A, Tomasetti C et al. Update on the mechanism of action of aripiprazole: translational insights into antipsychotic strategies beyond dopamine receptor antagonism. CNS Drugs 2015;29:773-799.146. Yokoi F, Gründer G et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): A study using positron emission tomography and [11C]Raclopride. Neuropsychopharmacol. 2002;27:248-259.147. Kegeles LS, Slifstein M et al. Dose–occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]fallypride. Neuropsycho-pharmacol. 2008;33:3111-3125.148. Girgis RR, Abi-Dargham A et al. In vivo dopamine D3 and D2 receptor occupancy profile of cariprazine versus aripiprazole: A PET study. Neuro-psychopharmacol. 2017;42:S595.149. Slifstein M, Abi-Dargham A et al. Binding of the D3-preferring antipsychotic candidate F17464 to dopamine D3 and D2 receptors: a PET study in healthy subjects with [11C]-(+)-PHNO. Psychophar-macol. 2020;237:519-527.150. Lieberman J, Bitter I et al. Efficacy of F17464, a new preferential D3 antagonist in a placebo-controlled phase 2 study of patients with acutely exacerbated schizophrenia. Neuropsychopharmacol. 2016;41 (Suppl 1):S-229-230.151. Stahl SM. Drugs for psychosis and mood: Unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectrums 2017;22:375-384.152. Keefe KA, Zigmond MJ et al. In vivo regulation of extracellular dopamine in the neostriatum: Influence of impulse activity and local excitatory amino acids. J Neural Transm Gen Sect. 1993;91:223-240.153. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neurosci. 1991;41,1-24.154. Floresco SB, West AR et al. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neurosci. 2003;6:968-973. 155. Anden NE, Stock G. Effects of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol. 1973;25:346-348.156. Bartholini G. Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic systems. J Pharm Pharmacol. 1976;28:429-433.157. Leysen JE, Janssen PMF et al. In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotics risperidone and ocaperidone. Mol Pharmacol. 1992;41:494-508.158. Hertel P, Nomikos GG et al. Risperidone: regional effects in vivo on release and metabolism of dopamine and serotonin in the rat brain. Psychopharmacol. 1996;124:74-86.159. Iniguez SD, Cortez AM et al. Effects of aripiprazole and terguride on dopamine synthesis in the dorsal striatum and medial prefrontal cortex of preweanling rats. J Neural Transm. 2008;115:97-106.160. Jordan S, Koprovica V et al. In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol. 2004;483:45-53.  161. Huang M, Panos JJ et al. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J Neurochem. 2014;128:938-949.162. Huang M, He M et al. The role of dopamine D3 receptor partial agonism in cariprazine-induced neurotransmitter efflux in rat hippocampus and nucleus accumbens. J Pharmacol Exp Ther. 2019;371:517-525.163. Westerink BH, DeVries JB. On the mechanism of neuroleptic induced increase in striatal dopamine release: Brain dialysis provides direct evidence for mediation by autoreceptors localized on nerve terminals. Neurosci Lett. 1989;99:197-202.164. Kuroki T, Meltzer HY et al. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther. 1999;288:774-781.165. Li X.-M, Perry KW et al. Olanzapine increases in vivo dopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens and striatum. Psychopharmacol. 1989;136:153-161. – 166. Schotte A, Janssen PFM et al. Autoradiographic evidence for the occlusion of rat brain dopamine D3 receptors in vivo. Eur J Pharmacol. 1992;218:373-375.167. Schotte A, Janssen PF et al. Endogenous dopamine limits the binding of antipsychotic drugs to D3 receptors in the rat brain: a quantitative autoradiographic study. Histochem J. 1996;28:791-799.168. Levant E. Differential sensitivity of [3H]7-OH-DPAT-labeled binding sites in rat brain to inactivation by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquino-line. Brain Res. 1995;698:146-154.169. Zhang K, Weiss NT et al. Effects of alkylating agents on dopamine D3 receptors in rat brain: selective protection by dopamine. Brain Res. 1999;847:32-37.170. Seeman P, Guan H-C. Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain. Synapse. 1989;3:96-97.171. Mach, RH, Tu Z et al. Endogenous dopamine (DA) competes with the binding of a radiolabeled D3 receptor partial agonist in vivo: A positron emission tomography study. Synapse. 2011;65:724-732.172. Rominger A, Wagner E et al. Endogenous competition against binding of [18F]DMFB and [18F]fallypride to dopamine D2/3 receptors in brain of living mouse. Synapse. 2010;64:313-322.173. Caravaggio F, Kegeles LS et al. Estimating the effects of endogenous dopamine on baseline [11C]-PHNO] binding in the human brain. Synapse. 2016;70:453-460.174. Cumming P, Gründer G. PET occupancy and competition in translational medicine and CNS Drug Development. Translational Medicine in CNS Drug Development, Handbook of Behavioral Neuroscience, Vol. 29 (eds. G.G. Nomikos, D. E. Feltner) 2019;pp.159-172.175. Maramai S, Gemma S et al. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front Neurosci. 2016;10:451. doi: 10.3389/fnins.2016.00451176. Herenbrink CK, Verma R et al. Molecular determinants of the intrinsic efficacy of the antipsychotic aripiprazole. ACS Chem Biol. 2019;14:1780-1792.177. Laszlovszky I, Némethy Gy. Kariprazin – mérföldkő a magyar gyógyszerkutatásban és egyedülálló lehetőség a negatív szimptómás skizofrén betegek kezelésére. Gyógyszerészet. 2015;59:643-646.178. Laszlovszky I, Kiss B et al. Kariprazin, egy új tipusú dopamin D3 receptort preferáló parciális agonista atipusos antipszichotikum a szkizofrénia és primér negatív tüneteinek kezelésére. Neuropsychopharmacol Hung. 2019;21:103-118.

Kiss B., Laszlovszky I., Krámos B.: Dopamine D3 receptors and antipsychotics – Aspects of mechanism of action and pharmacological properties – part II.

Disturbance of brain dopaminergic system is thought to play major role in the symptoms of schizophrenia (positive, negative symptoms and cognitive deficits). Current antipsychotics display affinities to wide range of receptors but their primary target in schizophrenia therapy are thought to be dopamine D2 receptors. Dopamine D3 receptors which belong to the D2-type dopamine receptor family have special distribution in the brain and play important roles in several CNS functions. Dopamine D2– and D3-receptors demonstrate high degree of structural and functional similarity. Most of the antipsychotics display similar in vitro affinity for dopamine D2 as well as for dopamine D3 receptors. Compounds (antagonists, partial agonists) with high affinity and selectivity toward D3 receptors were developed but did not result in clinically useful antipsychotics. Current antipsychotics demonstrate dopamine D2 occupancy in the living brain but only few of them (e.g. cariprazine and blonanserin) produced meaningful dopamine D3 receptor occupancy. We pointed out some factors (e.g. in vitro affinity for D3 receptors, endogenous concentration of dopamine, in vivo antagonism at dopamine D2 receptors) which may explain the lack of D3 occupancy of some antipsychotics. Antipsychotics with high and preferential affinity for D3 receptors, beside their affinity for dopamine D2 receptors (exemplified with cariprazine), may possess profile useful for the treatment of not only schizophrenia but for other psychiatric conditions, too. 

Absztrakt

Óriási, már a patikákban is tapasztalható igény jelentkezett a hivatalosan is világjárványt okozó SARS-CoV-2 azonosítására, ezért számos gyártó cég kezdett tesztgyártásba. A vírusfertőzés kimutatásának arany standardja jelenleg a légutakból vett mintákban található vírus RNS azonosítása molekuláris vizsgálatokkal (real time-PCR készülékkel). A PCR-alapú azonosítást helyettesítő, kiegészítő módszerek százai között találunk légúti mintákból nyerhető antigének, illetve szérumból nyerhető humán antitestek kimutatására irányuló teszteket is. Bár világjárványról van szó, országonként eltérő intézkedések és eljárásrendek léptek érvénybe mind a fertőzés megelőzését és kezelését, mind a kórokozó azonosítását illetően. Jelen közlemény1 a tesztelés lehetőségeire fókuszál, és elsősorban a bizonyítékon alapuló információkat, nemzetközi és hazai szervezetek által tett ajánlásokat veszi figyelembe.

Irodalom

1. World Health Organization. Coronavirus. https://www.who.int/health-topics/coronavirus#tab=tab_1 (2020.04.25.)2. Virológia Pécs – A PTE Szentágothai János Kutatóközpont Virológiai Kutatócsoport hivatalos Facebook oldala. https://www.facebook.com/virologiapecs/ (2020.04.25.)3. Vashist SK. In vitro diagnostic assays for COVID-19: Recent advances and emerging trends. Diagnostics (Basel). 2020;10(4). pii: E202.4. Wölfel R, Corman VM et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020.ápr.1. doi:10.1038/s41586-020-2196-x.5. World Health Organization. Laboratory testing for coronavirus disease (COVID-19)in suspected human cases: interim guidance, 19 March 2020. https://apps.who.int/iris/handle/10665/331501.6. World Health Organization‎. Advice on the use of point-of-care immunodiagnostic tests for COVID-19. 2020.ápr.1. https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19 (2020.04.28) – 7. Food and Drug Administration. Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency (Revised). [guidance document] Docket ID: FDA-2020-D-0987.8. European Centre for Disease Prevention and Control. An overview of the rapid test situation for COVID-19 diagnosis in the EU/EEA. [technical report] 2020.ápr.1. https://www.ecdc.europa.eu/en/publications-data/overview-rapid-test-situation-covid-19-diagnosis-eueea9. Centers for Disease Control and Prevention. Testing for COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html (2020.04.25.)10. Centers for Disease Control and Prevention. Evaluating and Testing Persons for Coronavirus Disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html (2020.05.01.)11. Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017;55:2313-20.12. Foundation for Innovative New Diagnostics. SARS-COV-2 molecular assay evaluation: results. https://www.finddx.org/covid-19/sarscov2-eval-molecular/molecular-eval-results/13. Foundation for Innovative New Diagnostics. SARS-COV-2 diagnostic pipeline. https://www.finddx.org/covid-19/pipeline/?section=molecular-assays#diag_tab (2020.04.29.)14. Magyar Tudományos Akadémia. Az MTA ajánlása a Covid-19 rövid és hosszú távú járványügyi kezelésére. 2020.ápr.22. https://mta.hu/mta_hirei/ajanlast-keszitett-a-donteshozok-szamara-a-magyar-tudomanyos-akademia-a-covid-19-rovid-es-hosszu-tavu-jarvanyugyi-kezeleserol-11061315. Nemzeti Népegészségügyi Központ. Eljárásrend a 2020. évben azonosított új koronavírussal kapcsolatban – 2020.04.01. https://www.nnk.gov.hu/index.php/koronavirus-tajekoztato/567-eljarasrend-a-2020-evben-azonositott-uj-koronavirussal-kapcsolatban-2020-03-16.

Miseta, I.: Coronavirus (rapid) tests – what you should know about them as a pharmacist

IRODALOM

1. Capp K, Deane FP et al. Suicide prevention in Aboriginal communities: application of community gatekeeper training. Aust N Z J Public Health. 2001;25:315-21.2. Griffiths KM, Christensen H et al. Effect of web-based depression literacy and cognitive-behavioural therapy interventions on stigmatising attitudes to depression: randomised controlled trial. Br J Psychiatry. 2004;185:342-9.3.  Hajnal A, Tóth MD,  Székely A, Purebl G. Stigmatizál-e a depresszió? A depresszió stigma kérdőív. In: Susánszky É, Szántó Zs. Magyar lelkiállapot, 2013. Budapest: Semmelweis Kiadó; 2013. 175-184. p. 4. Tóth MD. Az öngyilkossági kísérletezés pszichoszociális háttértényezőinek vizsgálata [PhD értekezés]. [Budapest]: Semmelweis Egyetem; 2016. 5. Coppens E, Van Audenhove C et al. Effectiveness of community facilitator training in improving knowledge, attitudes, and confidence in relation to depression and suicidal behavior: results of the OSPI-Europe intervention in four European countries. J Affect Disord. 2014;165:142-50.

Fritz Á., Tóth M.D., Susánszky É.: Pharmacists as gatekeepers in recognizing depression and preventing suicide – part II.

Hungary has one of the highest suicide rates in the European Union. Since depression is a major risk factor for suicide, the detection and treatment of this mental disorder is an effective way of preventing suicidal behavior. In daily practice, pharmacists often meet patients who are at higher risk of mental health problems. Therefore, as gatekeepers, they can play a key role in preventing depression and suicide. The first part of our article draws pharmacists’ attention to depression and suicide to enable better recognition of verbal and non-verbal signs of these disorders. In the second part, the results of a pilot study are presented. The purpose of the study was to assess the level of stigmatization among pharmacists against depression and their confidence in communication with depressed patients.

Brantner Antal Ifjúsági Nívódíj Pályázat

Absztrakt

A vesesejtes karcinómában (RCC: Renal Cell Carcinoma) szenvedő betegek kezelése drasztikusan megváltozott az elmúlt években. A közelmúltban az RCC kezelése a citokinterápiára korlátozódott, amely jelentős mellékhatásai és alacsony hatékonysága miatt egyre inkább kiszorul a terápiás profilból. A nefrektómia továbbra is fontos beavatkozás a lokalizált RCC-ben.  Az RCC molekuláris genetikai vizsgálata számos új célpontot biztosíthat a célzott terápia számára. Szövettanilag a leggyakoribb típus a világossejtes vesekarcinóma, melynek kialakulásáért főleg a VHL-gén funkciókiesése tehető felelőssé. A VHL mellett a PTEN, BAP1, FH, BHD és MET gének mutációi is jelentős információt szolgáltathatnak az RCC-t illetően. A molekuláris genetikai profil alapján megfelelően kiválasztott, célzott terápiás szer jelentősen növelheti a beteg túlélési esélyeit.

IRODALOM

1. Posadas EM, Limvorasak S et al. Targeted therapies for renal cell carcinoma. Nat Rev Nephrol. 2017;13:496-511.2. Pracht M, Berthold D. Successes and limitations of targeted therapies in renal cell carcinoma. Prog Tumor Res. 2014;41:98-112.3. Takeuchi H, Tokuyama N et al. Molecular targeted therapies of renal cell carcinoma considering life stage of the patient: Two case reports. Exp Ther Med. 2018;15:3976-80.4. Iványi B. A vese és húgyutak patológiája. In: Kopper L, Schaff Zs, szerk. Patológia 2. Budapest: Medicina; 2006. 998-1005. p.5. Tímár J, Kopper L, Bodrogi I. A világossejtes veserák célzott terápiája és molekuláris patológiai alapjai. Magyar Onkológia. 2006;50:309-14. – 6. Bodoky Gy, Kopper L. Urogenitális onkológia, Budapest: Medicina; 2011. 39-70. p.7. Kopper L, Tímár J. Molekuláris onkológia. Budapest: Semmelweis Kiadó; 2007. 140-4. et 270-1. p.8. Ho TH, Jonasch E. Genetic kidney cancer syndromes. J Natl Compr Canc Netw. 2014;12:1347-55.9. Na X, Wu G, Ryan CK et al. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol. 2003;170:588-92.10. Macher-Goeppinger S, Keith M, et al. MET expression and copy number status in clear-cell renal cell carcinoma: prognostic value and potential predictive marker. Oncotarget. 2017;8:1046-57.11. Géczi L, Buzogány I et al. A vese, a veseüregrendszer és az ureter daganatai. In: Kásler M, szerk. Az onkológia alapjai. Budapest: Medicina; 2011. 559-578. p.12. Farkas L, Flaskó T, Pajor L, Papp Gy, Tóth Cs. Urológia. Budapest: Medicina; 2014. 124-134. p.13. Schuhmacher P, Kim E et al. Growth characteristics and therapeutic decision markers in von Hippel-Lindau disease patients with renal cell carcinoma. Orphanet J Rare Dis. 2019;14:235.14. Zhou B, Wang J et al. Hemangioblastoma instead of renal cell carcinoma plays a major role in the unfavorable overall survival of von hippel-lindau disease patients. Front Oncol. 2019;9:1037.15. Hu SL, Chang A et al. The nephrologist’s tumor: basic biology and management of renal cell carcinoma. J Am Soc Nephrol. 2016;27:2227-37.16. Makhov P, Joshi S et al. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018;17:1355-64.17. Carlo MI, Mukherjee S et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 2018;4:1228-35.18. Mandelker D, Zhang L et al. mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal dna vs guideline-based germline testing. JAMA. 2017;318:825-835.19. Hutson TE. Targeted therapy for renal cell carcinoma: a new treatment paradigm. Proc (Bayl Univ Med Cent). 2007;20:244-8. – 20. Molina A. Therapeutic options for advanced renal cell carcinoma. Oncology Times. 2018;40:12-3.21. Azad NS, Posadas EM et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol. 2008;26:3709-14.

Korcsmáros, E., Szabó, Zs.: Genetic mutations in renal carcinomas as therapeutical targets

The treatment of patients with renal cell carcinoma (RCC) has dramatically changed in the last few years. Recently the treatment of RCC has been limited to cytokine therapy, which lost its popularity due to bad side effects and low efficiency. Nephrectomy remains an important intervention in localized RCC. Molecular genetic testing of RCCs may provide many new targets for targeted therapeutic agents. Histologically the most common type of cancer is the clear cell renal cell carcinoma (ccRCC), which is mainly due to the loss of function of the VHL gene. In addition to VHL, mutations in the PTEN, BAP1, FH, BHD, and MET genes may also provide important information on RCC. Choosing a targeted therapeutic agent with the right molecular genetic profile can significantly increase the patient’s chance of survival.

Beszélgetősarok

Aktuális oldalak