Gyógyszerészet 2020. március

2020. március TESZT

Tartalom

Gondolatok a felelős szerkesztő váltás kapcsán

Congressus Pharmaceuticus Hungaricus XVI.

Congressus Pharmaceuticus Hungaricus XVI. előzetes program

Továbbképző közlemények

1. Report of the Dietary Fiber Definition Committee to the Board of Directors of the American Association Of Cereal Chemists. Cereal Foods World 46, 112-126 (2001).

2. Jones, J.M.: Nutr J. 13, 1-10 (2014).

3. Meier, R.: Akt. Ernährungsmed. 39, S8–S12 (2014).

4. Bozzetto, L., Costabile, G., Della Peppa, G., et al.: Nutrients 10, 943-975 (2018).

5. InterAct Consortium: Dietary fibre and the incidence of type 2 diabetes in eight European countries: The EPIC-Inter Act Study and meta-analysis of prospective studies. Diabetologia 58, 1394-1408 (2015).

6. Chen, J-P., Chen, G-C., Wang, X-P. et al.: Nutrients 10, 24-40 (2018).

7. Meier, R., Havary, R., Forbes, A.: Dietary fibre: metabolism and physiological effects. pp.137-146. in: Sobotka, L. (ed): Basics in clinical nutrition 5th ed. Galen, Prague, (2019).

8. Gibson, S.A., McFarlan C., Hay, S., Macfarlane, G.T.: Appl Environmental Microbiol 55, 679-683 (1989).

9. Gibson, G.R., Probert, H.M., VanLoo, J. et al: Nutr Res Rev 17, 259-275 (2004).

10. Kittibunchakul, S., Maischberger, T., Domig, K.J., et al.: Molecules 23, 1-12 (2018).

11. Pan, X-D., Chen, F-Q., Wu, T-X., et al.: J Zhejiang Univ Sci B 10, 258-263 (2009).

12. Ishisono, K., Mano, T., Yabe, T., Kitagichi, K.: Front Immunol 10.2979. 2019 doi: 10.3389/fimmu.2019.02979.

13. Cheng, W., Lu, J., Li, B., et al.: Front Microbiol 8:1750. doi: 10.3389/fmicb.2017.01750.

14. Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., et al.: Foods 8, 1-27 (2019).

15. McKeen, S., Young, W., Mullaney, J. et al.: Nutrients 11, 1-23. (2019).

16. Brosseau, C., Selle, A., Palmer, D.J., et al.: Nutrients 11, 1-26 (2019).

17. Xia, Y., Zhang, S., Zhang, Q., et al.: Nutr Metabol 17, 1-11 (2020).

18. O’Keefe, S.J.: Lancet Gastroenterol Hepatol 4, 984-996 (2019).

19. Australian Government, National Health and medical research Council: Nutrition Reference Values. https://www.nrv.gov.au/nutrients/dietary-fibre  (letöltve: 2020.01.22.).

20. British Nutrition Foundation: Dietary fibre. https://www.nutrition.org.uk/healthyliving/basics/fibre.html (letöltve: 2020.01.22.).

21. Mayo Clinic Staff: Dietary fibre: essential for healthy diet. https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/fiber/art-20043983  (letöltve 2020.01.22.).

22. Thomann, R.: Akt.Ernährungsmed. 39, S13–S16 (2014).

23. Prynne, C.J., McCarron, A., Wadsworth, M.E.J., Stephen, A.M.: Br J Nutr 103, 274-280 (2010).

24. Miller, L.V., Hambidge, K.M., Krebs, N.F.: J Nutr 145, 1763-1769 (2015).

25. Hoppe, M., Ross, A.B., Svelander, C., et al.: Eur J Nutr 58, 853-864 (2019).

26. Dreher, M.L.: Nutrients 10, 1933-1887 (2018).

Télessy, I: About dietary fibres, their physiology and impact

Consumption of dietary fibres in the industrially developed countries is much less than recommended. Dietary fibres originate from plants and form a very heterogenous group of polysaccharides. Soluble fibres are mostly fermented in the small bowel but a small portion reaches the colon as well. Insoluble fibres are mainly resistant to the human gastrointestinal enzymes and their breakdown takes place in the colon by the bacterial enzymes. The latter type of fibres are called prebiotics that maintain diversity and number of intestinal bacteria plus feed them. Physiological effects of fibres are mainly beneficial: apart of the prebiotic effect fibers directly or indirectly maintain the GI motility and cleaning of the bowel, increase absorption of minerals and micronutrients, exert independent antiinflammatory function and manage glycemic control, regulate the pH of the colon and have an antiobesogenic effect via appetite control. In the publication all above mentioned properties are discussed in details.

1. Wichtl, M.: Johanniskraut, in: Teedrogen. Wissenschaftliche Verlagsgesellschaft GmbH, Stuttgart, pp. 257-259 (1989).

2. Bombardelli, E., Morazzoni, P.: Fitoterapia 66(1), 43-68 (1995).

3. Pluhár, Zs., Halászné Zelnik, K.: Hypericum perforatum L. in: Vadontermő és termesztett gyógynövények, Mezőgazda Kiadó, Budapest, pp. 308-309 (2013).

4. Csupor, D., Szendrei, K., Csapi, B.: Gyógyszerészet 49, 1-9 (2005).

5. Udvardy, L.: A kertészeti növénytan növényismereti kompendiuma, BCE és Mezőgazda Kiadó, Budapest, p. 68 (2008).

6. Simon, T.: A magyarországi edényes flóra határozója, Nemzeti Tankönyvkiadó, Budapest, p. 478 (2008).

7. Király, G.: Új magyar füvészkönyv, Aggteleki Nemzeti park Igazgatósága, pp. 285-286 (2009).

8. Bomme, U.: Zeitschrift für Arznei und Gewürzpflanzen 2, pp. 127-134 (1997).

9. VIII. Magyar Gyógyszerkönyv, Medicina, Budapest, pp. 2039-2040 (2004).

10. Greeson, J.M., Sanford, B., Monti, D.A.: Psychopharmacology 153(4), 402-414 (2001).

11. Bruni, R., Sacchetti, G.: Molecules 14, 682-725 (2009).

12. Nahrstedt, A., Butterweck, V.: Pharmacopsychiatry 30(2), 129-134 (1997).

13. Upton, R.: Herbalgram 40, 2-31 (1997).

14. WHO Monographs on Selected Medicinal Plants, Vol. 2, 149-171 (2004).

15. Schmidt, M., Butterweck, V.: Wien Med Wochenschr 165(11-12), 229-235 (2015).

16. Csupor, D., Szendrei, K., Csapi B.: Gyógyszerészet 6, 421-426 (2005).

17. Chang, Y., Wang, S.J.: Eur J Pharmacol 634(1-3), 53–61 (2010).

18. Kasper, S., Caraci, F., Forti, B., Drago, F., Aguglia, E.: Eur Neuropsychopharmacol 20(11), 747-765 (2010).

19. Apaydin, E.A., Maher, A.R., Shanman, R., Booth, M.S., Miles, J.N., Sorbero, M.E., Hempel, S.: Syst Rev 5(1) 148 (2016).

20. Ng, Q.X., Venkatanarayanan, N., Ho, C.Y.: J Affect Disord 210, 211-221 (2017).

21. Brockmöller, J., Reum, T., Bauer, S., Kerb, R., Hübner, W.D., Roots, I.: Pharmacopsychiatry 30 (Suppl 2), 94-101 (1997).

22. Schulz, H.U., Schürer, M., Bässler, D., Weiser, D.: Arzneimittelforschung 56(3), 212-221 (2006).

23. Mueller, S.C., Majcher-Peszynska, J., Uehleke, B., Klammt, S., Mundkowski, R.G., Miekisch, W., et al: Eur J Clin Pharmacol 62(1), 29-36 (2006).

24. Mueller, S.C., Uehleke, B., Woehling, H., Petzsch, M., Majcher-Peszynska, J., Hehl, E.M., et al: Clin Pharmacol Ther 75(6), 546-557 (2004).

25.  Will-Shahab, L., Bauer, S., Kunter, U., Roots, I., Brattström, A.: Eur J Clin Pharmacol 65(3), 287-294 (2009).

26. Pfrunder, A., Schiesser, M., Gerber, S., Haschke, M., Bitzer, J., Drewe, J.: Br J Clin Pharmacol 56(6), 683-690 (2003).

27. Brattström, A.: Phytomedicine 16(4), 277-283 (2009).

1. Dóczy, V., Mészáros, Á.: Acta Pharm Hung 83(1), 13-27 (2013).

2. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., Piddock, L. J. V.: Nat Rev Microbiol 13, 42–51 (2014).

3. Walsh, C.: Nature 406, 775–781 (2000).

4. Ludwig, E.: Infektológia és Klinikai Mikrobiológia 4(1), 1-7 (2008).

5. Sackett, D.L., Haynes, R.B.: Compliance with therapeutic regimens. John Hopkins University Press, Baltimore. (1976).

6. Ágh. T., Mészáros, Á.: Acta Pharm Hung, 80, 75-80 (2010).

7. Cramer, J.A., Roy, A., Burrell, A., Fairchild, C.J., Fuldeore, M.J., Ollendorf, D.A., Wong, P.K.: Value Health 11, 44-47 (2008).

8. Adherence to long-term therapies: evidence for action. World Health Organization, Geneva, (2003) pp. 1–59.

9. Ruppar, T., Demonceau, J., DeGeest, S., Vrijens, B.: Eur J Cardiovasc Nurs, 9, S29 (2010).

10. Horne, R.: Chest 130(1 Suppl), 655-725 (2006).

11. Agency for Healthcare Research and Quality (AHRQ), Re-Engineered Discharge (RED) Toolkit, Tool 5: How To Conduct a Post-discharge Follow-up Phone Call, letölthető: https://www.ahrq.gov/hai/red/toolkit/redtool5.html

12. Szabó, A.; Gajdács, M.; Paulik, E.: Vélemények és ismeretek az antibiotikum-használatról, in: Nagy, Cs.; Oroszi, B., (ed.) A Magyar Higiénikusok Társasága 74. Vándorgyűlése, Magyar Higiénikusok Társasága, Budapest (2016) pp. 72–72.

13. Fernandes, M., Leite, A., Basto, M., Nobre, M.A., Vieira, N., Fernandes, R., Nogueira, P., Nicola, P.J.: Int J Clin Pharm 36(1), 86-91 (2014)

14. Eells, S.J., Nguyen, M., Jung, J., Macias-Gil, R., May, L., Miller, L.G.: Antimicrob Agents Chemother 60, 2941–2948 (2016).

[15] Tong, S., Pan, J., Lu, S., Tang, J.: Am J Infect Control 46(4), e25-e29  (2018).

16. Adherence to Oral Antibiotics In Patients With Osteoarticular Infections (OBSAIO), ClinicalTrials.gov identifier: NCT03311113.

17. Sclar, D.A., Tartaglione, T.A., Fine, M.J.:  Infect Agents Dis 3, 266-73 (1994)

18. Baek-Nam, K., Eu Suk, K., Myoung-Don, O.;  J Antimicrob Chemother 69(2), 309-322 (2014).

19. Osmon, D.R., Berbari, E.F., Berendt, A.R., Lew, D., Zimmerli, W., Steckelberg, J.M., Rao, N., Hanssen, A., Wilson, W.R.: Clin Infect Dis 56(1), e1-e25  (2013).

Nagy, E.E.; Gyimesi, N.; Bor, A.; Süle, A.: Analysis of post-discharge therapeutic adherence of patients receiving antimicrobial therapies

To a large majority of patients discharged from (surgical) hospital wards antibiotics are prescribed. Taking the risk of potential infections and the specificity of optimally targeted antimicrobial therapies into account, persistence to medicinal therapies is essential in achieving optimal clinical outcomes. In this paper factors influencing patient adherence are reviewed based on international evidence and experimental data from a septic surgery ward is used to put high-risk patients’ results into a broader context. Based on a standardized questionnaire, patient interviews were carried out by clinical pharmacists in order to assess patient awareness, adherence and potentially experienced side effects. It was shown that while a large proportion (73%) of responders considered themselves well-informed of their therapies, only half of them met the relevant criteria. 41% of patients used their medications in inappropriate dose and almost one-third of them reported at least one missed dose. Numerous cases were found where patients did not obtain their prescribed antibiotics in time, or at all. Considering optimal drug use, a statistically significant difference was found between well-informed and inadequately informed patients. In line with international evidence, experimental data has shown that patient education and pharmaceutical counseling does have a paramount importance in achieving optimal therapeutic adherence. This evidence also indicates the magnitutde of the changing roles in hospital and community pharmacy agenda for policy makers.

Brantner Antal Ifjúsági Nívódíj Pályázat

1. Szőke É., Balázs A., Blázovics A., Kéry Á., Kursinszki L., Lemberkovics É., Then M., Alberti-Dér Á., Balogh Gy., Bányai P., Blazics B., Böszörményi A., Kalász H., Könczöl Á., Lugasi A., Szarka Sz., Szentmihályi K., Vasas G.: Gyógynövény és Drogismeret Farmakognózia – Fitokémia, gyógynövények alkalmazása. Egyetemi jegyzet, Semmelweis Egyetem, (2012) – 2. Moorhead K., Capelli Dr. Gerald R. Cysewski B.: Spirulina: A természet csodatápláléka, VB Fox Kft., (2011) (Cyanotech Corporation) – 3. Sili C., Torzillo G., Vonshak A.: Athrospira (Spirulina), Ecology of Cyanobacteria II (pp.677-705) (2012) – 4. Tihanyi A, Tóth J, Weber-Suta Á: Zöld utat az egészségnek! Mikroalgák szerepe a modern táplálkozásban és a gyógyításban, Budapest, Bereniké Szolg. és Tanácsadó Kft., ISBN 978 963 06 5961 1 (2008) –5. Ásványi-Molnár N.: Funkcionális hatású tejtermék előállítása Spirulina (arthrospira platensis) felhasználásával, Nyugat-magyarországi Egyetem Kiadó, Sopron, Magyarország (2009) – 6. Péterfi I.: Az algák biológiája és gyakorlati jelentősége, Ceres Könyvkiadó, Bukarest (1977) – 7. Magyar Dietetikusok Országos Szövettsége: Táplálkozási Akadémia Hírlevél III. évfolyam 8. szám, (2010. augusztus) – 8. Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N., Assimakopoulos, D. A.: Evid. Based Complement. Alternat. Med. (2011); 2011:531053 – 9. Delsin SD, Mercurio DG, Fossa MM, Maia Campos PMBG: Clin Pharmacol Biopharm 4:144. (2015) – 10. Vonshak, A.: Spirulina Platensis Arthrospira: Physiology, Cell-Biology And Biotechnology, CRC Press, 175-183. (2014) – 11. Ziboh VA, Miller CC, Cho Y.: Am J Clin Nutr. 2000;71(1 Suppl):361–366. (2000) – 12. Kerscher, M. J., & Korting, H. C.: The Clinical Investigator, 70(2):167-171. (1992) – 13. McCord JM, Fridovich I.: J. Biol. Chem. 244: 6049-6055 (1969) – 14. Azzi A, Gysin R, Kempná P, Munteanu A, Negis Y, Villacorta L, Visarius T, Zingg JM.: Ann N Y Acad Sci.;1031:86-95. (2004) – 15. Storf M, Parbel A, Meyer M, Strohmann B, Scheer H, Deng MG. et al.: Biochemistry. 40:12444–56.) (2001) – 16. K.M. Kim, J.Y. Lee, A.R. Im, and S. Chae: Molecules, 23, 478 (2018) – 17. C.S. Gur, D.K. Erdogan, I. Onbasılar, P. Atilla, N. Cakar, and I.D. Gurhan: J. Med. Plants Res., 7, 425-433 (2013) – 18. Romay C, Armesto J, Remirez D, González R, Ledon N, García I.: Inflamm Res. 47(1):36-41. (1998) – 19. Tavani, A., & La Vecchia, C.: Biomedicine & Pharmacotherapy, 53(9), 409–416. (1999) – 20. Pinazo-Durán, M. D., Gómez-Ulla, F., Arias, L., Araiz, J., Casaroli-Marano, R., Gallego-Pinazo, R., García-Layana, A.: Journal of Ophthalmology, 2014, 1–15. (2014) – 21. Druesne-Pecollo, N., Latino-Martel, P., Norat, T., Barrandon, E., Bertrais, S., Galan, P., & Hercberg, S.: Int. J.  Cancer, 127(1), 172–184. (2009). – 22. Vichi S, Lavorini P, Funari E, Scardala S, Testai E.: Food Chem Toxicol.; 50(12):4493-9. (2012). – 23. Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S.: Detection of Cyanotoxins in Algae Dietary Supplements. Toxins (Basel). 25;9(3). (2017) – 24. OGYÉI bejelentett étrend-kiegészítőket tartalmazó lista https://ogyei.gov.hu/ETREND_LISTA/, letöltve: 2019.12.16. – 25. https://algae-lab.com/shop/living-algae/culture-sample/spirulina-platensis-live-algae-spiral-cells/, letöltve: 2018.09.09. – 26. http://algae-lab.com/product/spirulina-maxima-live-algae-2/, letöltve: 2018.09.09. – 27. https://www.drugstore.hu/wp-content/uploads/2015/01/Spirulina-por.jpg,
letöltve: 2019.09.11. – 28. https://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0073_novenyi_anyagcsere/ch10s06.html, letöltve: 2018.09.08. – 29. https://www.researchgate.net/figure/Fig-1-Chemical-structure-of-C-phycocyanin_fig1_236095734, letöltve: 2019.11.21.

Józsa L., Fehér P.: What you need to know about Spirulina algae

Drugs containing natural active substances have an increasing role in therapy. Products, dietary supplements made using Spirulina algae have been in circulation for some time, thanks to the valuable ingredients that Spirulina contains. Because of its bioactive compounds such as beta carotene, Vitamin E, phycocyanine and superoxide dismutase enzyme it have antioxidant effect. Externally it reduces dryness and itching of the skin, inhibits the formation of acne, moderates irritation and stimulates metabolism at cellular level. However, despite the many positive effects, care must be taken to obtain Spirulina-containing products from a reliable source.

Aktuális oldalak

In emoriam

Székely Éva