
2022. november TESZT
Tartalom
Továbbképző közlemények
A psoriasis krónikus, immunmediált bőrbetegség, melynek különböző formái ismertek, azonban a leggyakoribb a krónikus plakkos psoriasis. Patomechanizmusában a genetikai és környezeti tényezők mellett a keratinocyták, az innate és adaptív immunrendszer sejtjei is szerepet játszanak. A psoriasisra vonatkozó ismereteink bővülésével a terápiában is egyre célzottabban ható oralis készítmények és citokineket célzó biológiai terápiák jelentek meg. Ezen terápiák által pedig egyre több beteg számára vált elérhetővé a tünetmentes bőr, illetve jelentősen javult a betegek életminősége.
Kulcsszavak: psoriasis vulgaris, PDE-4-gátló, JAK-gátló, biológiai terápia
Small molecules and biological therapies for the treatment of psoriasis
Psoriasis is a chronic, immune-mediated skin disease with different forms, but the most common is chronic plaque psoriasis. In addition to genetic and environmental factors, keratinocytes, innate and adaptive immune cells are involved in the pathomechanism. As our knowledge of psoriasis has evolved, small molecules and biological therapies targeting cytokines have emerged in therapy. These therapies have led to an increasing number of patients achieving symptom-free skin and a significantly improved quality of life.
Keywords: psoriasis vulgaris PDE-4 inhibitor, JAK inhibitor, biological therapy
Irodalom
1. Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31(2):205-212. – 2. World Health Organization. Global Report on Psoriasis: World Health Organization, 2016. Accessed February 13, 2020. – 3. Mease P, Goffe BS. Diagnosis and treatment of psoriatic arthritis. J AmAcad Dermatol. 2005;52(1): 1-19. – 4. Yeung H, Takeshita J, Mehta NN, et al. Psoriasis severity and the prevalence of major medical comorbidity: a population-based study. JAMA Dermatol. 2013;149(10):1173-1179. – 5. Alwan W, Nestle FO. Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine. Clin Exp Rheumatol. 2015;33(5)(suppl 93):S2-S6. – 6. Harden, J.L.; Krueger, J.G.; Bowcock, A.M. The immunogenetics of Psoriasis: A comprehensive review. J. Autoimmun. 2015; 64: 66–73. – 7. Morizane, S.; Yamasaki, K.; Mühleisen, B. et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J. Investig. Dermatol. 2012; 132: 135–143. – 8. Girolomoni, G.; Strohal, R.; Puig, L. et al. The role of IL-23 and the IL-23/T(H) 17 immune axis in the pathogenesis and treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. J Eur Acad Derm Venereol. 2017; 31: 1616–1626. – 9. Takagi, H.; Arimura, K.; Uto, T. et al. Plasmacytoid Dendritic Cells Orchestrate TLR7-Mediated Innate and Adaptive Immunity for the Initiation of Autoimmune Inflammation. Sci. Rep. 2016; 6: 24477. – 10. Hawkes, J.E.; Chan, T.C.; Krueger, J.G. Psoriasis Pathogenesis and the Development of Novel Targeted Immune Therapies. J. Allergy Clin. Immunol. 2017; 140: 645–653. – 11. Eyerich, S.; Eyerich, K.; Pennino, D. et al. Th22 Cells Represent a Distinct Human T Cell Subset Involved in Epidermal Immunity and Remodeling. J. Clin. Investig. 2009; 119: 3573–3585. – 12. Tokuyama M, Mabuchi T. New treatment addressing the pathogenesis of psoriasis. Int. J. Mol. Sci. 2020; 21: 7488. – 13. Petit RG, Cano A, Ortiz A, Espina M. et al. Psoriasis: From pathogenesis to pharmacological and nano-technological-based therapeutics. Int. J. Mol. Sci. 2021; 22: 4983. – 14. Korman NJ. Management of psoriasis as a systemic disease: what is the evidence? Br J dermatol. 2020; 182: 840-848. – 15. Lerman JB, Joshi AA, Chaturvedi A, et al. Coronary plaque characterization in psoriasis reveals high-risk features that improve after treatment in a prospective observational study. Circulation. 2017;136(3):263-276. – 16. Gelfand JM, Neimann AL, Shin DB,Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296(14): 1735-1741. – 17. Gelfand JM, Dommasch ED, Shin DB, et al. The risk of stroke in patients with psoriasis. J Invest Dermatol. 2009;129(10):2411-2418. – 18. Singh S, Taylor C, Kornmehl H, Armstrong AW. Psoriasis and suicidality: a systematic review and meta-analysis. J AmAcad Dermatol. 2017;77(3): 425-440.e2. – 19. Dalgard FJ, Gieler U, Tomas-Aragones L, et al. The psychological burden of skin diseases: a cross-sectional multicenter study among dermatological out-patients in 13 European countries. J Invest Dermatol. 2015;135(4):984-991. – 20. Eppinga H, Poortinga S, Thio HB, et al. Prevalence and phenotype of concurrent psoriasis and inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(10):1783-1789. – 21. Papp, K.; Reich, K.; Leonardi, C.L. et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J Am Acad Dermatol 2015; 73: 37–49. – 22. Keating, G.M. Apremilast: A Review in Psoriasis and Psoriatic Arthritis. Drugs 2017; 77: 459–472. – 23. Armstrong AW., Read C. Pathophisiology, clinical presentation, and treatment of psoriasis a review. JAMA. 2020; 323 (19): 1945-1957. – 24. O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V. et al. The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annu. Rev. Med. 2015; 66: 311–328. – 25. Schwartz, D.M.; Kanno, Y.; Villarino, A. et al. JAK Inhibition as a Therapeutic Strategy for Immune and Inflammatory Diseases. Nat. Rev. Drug Discov. 2017; 16: 843–862. – 26. Papp, K.A.; Menter, M.A.; Abe, M. et al. Tofacitinib, an Oral Janus Kinase Inhibitor, for the Treatment of Chronic Plaque Psoriasis: Results from Two Randomized, Placebo-controlled, Phase III Trials. Br J Dermatol. 2015; 173: 949–961. – 27. Azevedo, A.; Torres, T. Tofacitinib: A New Oral Therapy for Psoriasis. Clin. Drug Investig. 2018; 38: 101–112. – 28. Banerjee, S.; Biehl, A.; Gadina, M. et al. JAK–STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017; 77: 521–546. – 29. Armstrong AW, Puig L, Joshi A, et al. Comparison of biologics and oral treatments for plaque psoriasis: a meta-analysis. JAMA Dermatol. 2020;156(3):258-269. – 30. Menter A et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol. 2019;80(4):1029-1072. – 31. Kalb RE, Fiorentino DF, Lebwohl MG, et al. Risk of serious infection with biologic and systemic treatment of psoriasis: results from the psoriasis longitudinal assessment and registry (PSOLAR). JAMA Dermatol. 2015;151(9):961-969. – 32. Mariette X, Matucci-Cerinic M, Pavelka K, et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis. Ann Rheum Dis. 2011;70(11):1895- 1904. – 33. Gordon K, Korman N, Frankel E, et al. Efficacy of etanercept in an integrated multistudy database of patients with psoriasis. J Am Acad Dermatol. 2006;54(3 Suppl 2):S101-S111. – 34. Papp KA, Tyring S, LahfaM, et al; Etanercept Psoriasis Study Group. A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br J Dermatol. 2005;152(6):1304-1312. – 35. Bagel J, Lynde C, Tyring S, et al. Moderate to severe plaque psoriasis with scalp involvement: a randomized, double-blind, placebo-controlled study of etanercept. J Am Acad Dermatol. 2012;67(1):86-92. – 36. Menter A, Warren RB, Langley RG, et al. Efficacy of ixekizumab compared to etanercept and placebo in patients with moderate-to-severe plaque psoriasis and non-pustular palmoplantar involvement: results from three phase 3 trials (UNCOVER-1, UNCOVER-2 and UNCOVER-3). J Eur Acad Dermatol Venereol. 2017;31(10):1686-1692. – 37. Levin EC, Debbaneh M, Koo J, Liao W. Biologic therapy in erythrodermic and pustular psoriasis. J Drugs Dermatol. 2014; 13(3):342-354. – 38. Viguier M, Pages C, Aubin F, et al. Efficacy and safety of biologics in erythrodermic psoriasis: a multicentre, retrospective study. Br J Dermatol. 2012;167(2):417-423. – 39. Romero-Mate A, Garcia-Donoso C, Martinez-Moran C, et al. Long-term management of erythrodermic psoriasis with anti-TNF agents. Dermatol Online J. 2010;16(6):15. – 40. Paller AS, Siegfried EC, Langley RG, et al; Etanercept Pediatric Psoriasis Study Group. Etanercept treatment for children and adolescents with plaque psoriasis. N Engl J Med. 2008;358(3): 241-251. – 41. Bettoli V, Zauli S, Virgili A. Retinoids in the chemoprevention of non-melanoma skin cancers: why, when and how. J Dermatolog Treat. 2013;24(3):235-237. – 42. Nijsten TE, Stern RS. Oral retinoid use reduces cutaneous squamous cell carcinoma risk in patients with psoriasis treated with psoralen-UVA: a nested cohort study. J Am Acad Dermatol. 2003;49(4):644-650. – 43. AbuHilal M, Walsh S, Shear N. Use of apremilast in combination with other therapies for treatment of chronic plaque psoriasis: a retrospective study. J Cutan Med Surg. 2016;20(4): 313-316. – 44. Lee EJ, Shin MK, Kim NI. A clinical trial of combination therapy with etanercept and low dose cyclosporine for the treatment of refractory psoriasis. Ann Dermatol. 2010;22(2): 138-142. – 45. de Vries MK, van der Horst-Bruinsma IE, Nurmohamed MT, et al. Immunogenicity does not influence treatment with etanercept in patients with ankylosing spondylitis. Ann Rheum Dis. 2009;68(4):531-535. – 46. Thomas SS, Borazan N, Barroso N, et al. Comparative immunogenicity of TNF inhibitors: impact on clinical efficacy and tolerability in the management of autoimmune diseases. A systematic review and meta-analysis. BioDrugs. 2015;29(4): 241-258. – 47. Reich K, Nestle FO, Papp K, et al; EXPRESS study investigators. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet. 2005;366(9494):1367-1374. – 48. Menter A, Feldman SR, Weinstein GD, et al. A randomized comparison of continuous vs. intermittent infliximab maintenance regimens over 1 year in the treatment of moderate to- severe plaque psoriasis. J Am Acad Dermatol. 2007;56(1):31 e31-15. – 49. Barker J, Hoffmann M, Wozel G, et al. Efficacy and safety of infliximab vs. methotrexate in patients with moderate-to-severe plaque psoriasis: results of an open-label, active-controlled, randomized trial (RESTORE1). Br J Dermatol. 2011; 165(5):1109-1117. – 50. Bissonnette R, Poulin Y, Guenther L, et al. Treatment of palmoplantar psoriasis with infliximab: a randomized, double-blind placebo-controlled study. J Eur Acad Dermatol Venereol. 2011;25(12):1402-1408. – 51. Rich P, Griffiths CE, Reich K, et al. Baseline nail disease in patients with moderate to severe psoriasis and response to treatment with infliximab during 1 year. J Am Acad Dermatol. 2008;58(2):224-231. – 52. Fotiadou C, Lazaridou E, Sotiriou E, et al. Scalp psoriasis and biologic agents: a retrospective, comparative study from a tertiary psoriasis referral centre. J Eur Acad Dermatol Venereol. 2016;30(12):2091-2096. – 53. Viguier M, Aubin F, Delaporte E, et al. Efficacy and safety of tumor necrosis factor inhibitors in acute generalized pustular psoriasis. Arch Dermatol. 2012;148(12):1423-1425. – 54. Poulalhon N, Begon E, Lebbe C, et al. A follow-up study in 28 patients treated with infliximab for severe recalcitrant psoriasis: evidence for efficacy and high incidence of biological autoimmunity. Br J Dermatol. 2007;156(2):329-336. – 55. Takahashi MD, Castro LG, Romiti R. Infliximab, as sole or combined therapy, induces rapid clearing of erythrodermic psoriasis. Br J Dermatol. 2007;157(4):828-831. – 56. Heikkila H, Ranki A, Cajanus S, Karvonen SL. Infliximab combined with methotrexate as long-term treatment for erythrodermic psoriasis. Arch Dermatol. 2005;141(12):1607-1610. – 57. Sheth N, Greenblatt DT, Acland K, et al. Generalized pustular psoriasis of pregnancy treated with infliximab. Clin Exp Dermatol. 2009;34(4):521-522. – 58. Yawalkar N, Hunger RE. Successful treatment of recalcitrant palmoplantar pustular psoriasis with sequential use of infliximab and adalimumab. Dermatology. 2009;218(1):79- 83. – 59. Dalaker M, Bonesronning JH. Long-term maintenance treatment of moderate-to-severe plaque psoriasis with infliximab in combination with methotrexate or azathioprine in a retrospective cohort. J Eur Acad Dermatol Venereol. 2009; 23(3):277-282. – 60. Steenholdt C, Svenson M, Bendtzen K, et al. Severe infusion reactions to infliximab: aetiology, immunogenicity and risk factors in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2011;34(1):51-58. 106. – 61. Lee LY, Sanderson JD, Irving PM. Anti-infliximab antibodies in inflammatory bowel disease: prevalence, infusion reactions, immunosuppression and response, a meta-analysis. Eur J Gastroenterol Hepatol. 2012;24(9):1078-1085. – 62. Bartoli F, Bruni C, Cometi L, et al. Premedication prevents infusion reactions and improves retention rate during infliximab treatment. Clin Rheumatol. 2016;35(11):2841-2845. – 63. Menter A, Tyring SK, Gordon K, et al. Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J AmAcad Dermatol. 2008;58(1):106-115. – 64. Saurat JH, Stingl G, Dubertret L, et al. Efficacy and safety results from the randomized controlled comparative study of adalimumab vs. methotrexate vs. placebo in patients with psoriasis (CHAMPION). Br J Dermatol. 2008; 158(3):558-566. – 65. Blauvelt A, Papp KA, Griffiths CE, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol. 2017;76(3):405-417. – 66. Poulin Y, Crowley JJ, Langley RG, et al. Efficacy of adalimumab across subgroups of patients with moderate-to-severe chronic plaque psoriasis of the hands and/or feet: post hoc analysis of REACH. J Eur Acad Dermatol Venereol. 2014;28(7):882-890. – 67. Armstrong AW, Bagel J, Van Voorhees AS, et al. Combining biologic therapies with other systemic treatments in psoriasis: evidence-based, best practice recommendations from the Medical Board of the National Psoriasis Foundation. JAMA Dermatol. 2015;151(4): 432-438. – 68. Cohen Barak E, Kerner M, Rozenman D, Ziv M. Combination therapy of cyclosporine and anti-tumor necrosis factor alpha in psoriasis: a case series of 10 patients. Dermatol Ther. 2015; 28(3):126-130. – 69. Bagel J. Adalimumab plus narrowband ultraviolet B light phototherapy for the treatment of moderate to severe psoriasis. J Drugs Dermatol. 2011;10(4):366-371. – 70. Delgado Frias E, Diaz Gonzalez JF. [Certolizumab pegol]. Reumatol Clin. 2011;6S3:S7-S11. – 71. Chimenti MS, Saraceno R, Chiricozzi A, et al. Profile of certolizumab and its potential in the treatment of psoriatic arthritis. Drug Des Devel Ther. 2013;7: 339-348. – 72. Gottlieb AB, Blauvelt A, Thaçi D, et al. Certolizumab pegol for the treatment of chronic plaque psoriasis: results through 48 weeks from 2 phase 3, multicenter, randomized, double-blinded, placebo-controlled studies (CIMPASI-1 and CIMPASI-2). J Am Acad Dermatol. 2018;79(2):302- 314.e6. – 73. Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665-1674. – 74. Papp KA, Langley RG, Lebwohl M, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675-1684. – 75. Blauvelt A, Reich K, Tsai TF, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: results from the CLEAR study. J Am Acad Dermatol. 2017;76(1): 60-69.e69. – 76. Reich K, Pinter A, Lacour JP, et al. Comparison of ixekizumab with ustekinumab in moderate-to-severe psoriasis: 24-week results from IXORA-S, a phase III study. Br J Dermatol. 2017; 177(4):1014-1023. – 77. Bertelsen T, Kragballe K, Johansen C, Iversen L. Efficacy of ustekinumab in palmoplantar pustulosis and palmoplantar pustular psoriasis. Int J Dermatol. 2014;53(10):e464-e466. – 78. Rich P, Bourcier M, Sofen H, et al. Ustekinumab improves nail disease in patients with moderate-to-severe psoriasis: results from PHOENIX 1. Br J Dermatol. 2014;170(2):398-407. – 79. Papadavid E, Ferra D, Koumaki D, et al. Ustekinumab induces fast response and maintenance of very severe refractory scalp psoriasis: results in two Greek patients from the psoriasis hospital-based clinic. Dermatology. 2014;228(2): 107-111. – 80. Au SC, Goldminz AM, Kim N, et al. Investigator-initiated, open-label trial of ustekinumab for the treatment of moderate-to-severe palmoplantar psoriasis. J Dermatolog Treat. 2013;24(3):179-187. – 81. Patsatsi A, Kyriakou A, Sotiriadis D. Ustekinumab in nail psoriasis: an open-label, uncontrolled, nonrandomized study. J Dermatolog Treat. 2013;24(2):96-100. – 82. Heinecke GM, Luber AJ, Levitt JO, Lebwohl MG. Combination use of ustekinumab with other systemic therapies: a retrospective study in a tertiary referral center. J Drugs Dermatol. 2013;12(10):1098-1102. – 83. Wolf P, Weger W, Legat FJ, et al. Treatment with 311-nm ultraviolet B enhanced response of psoriatic lesions in ustekinumab-treated patients: a randomized intraindividual trial. Br J Dermatol. 2012;166(1):147-153. – 84. Kauffman CL, Aria N, Toichi E, et al. A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J Invest Dermatol. 2004;123(6):1037-1044. – 85. Egeberg A, Ottosen MB, Gniadecki R, et al. Safety, efficacy and drug survival of biologics and biosimilars for moderate to- severe plaque psoriasis. Br J Dermatol. 2018;178(2):509- 519. – 86. Langley RG, Lebwohl M, Krueger GG, et al. Long-term efficacy and safety of ustekinumab, with and without dosing adjustment, in patients with moderate-to-severe psoriasis: results from the PHOENIX 2 study through 5 years of follow up. Br J Dermatol. 2015;172(5):1371-1383. – 87. Blauvelt A, Ferris LK, Yamauchi PS, et al. Extension of ustekinumab maintenance dosing interval in moderate-to severe psoriasis: results of a phase IIIb, randomized, double blinded, active-controlled, multicentre study (PSTELLAR). Br J Dermatol. 2017;177(6):1552-1561. – 88. Langley RG, Elewski BE, Lebwohl M, Reich K et al. Secukinumab in plaque psoriasis – Results of two phase 3 trials. N Engl J Med. 2014; 371: 326-338. – 89. Kircik L, Fowler J, Weiss J, et al. Efficacy of secukinumab for moderate-to-severe head and neck psoriasis over 52 weeks: pooled analysis of four phase 3 studies. Dermatol Ther (Heidelb). 2016;6(4):627-638. – 90. Mugheddu C, Atzori L, Lappi A, et al. Successful secukinumab treatment of generalized pustular psoriasis and erythrodermic psoriasis. J Eur Acad Dermatol Venereol. 2017;31(9):e420-e421. – 91. Gottlieb A, Sullivan J, van Doorn M, et al. Secukinumab shows significant efficacy in palmoplantar psoriasis: results from GESTURE, a randomized controlled trial. J Am Acad Dermatol. 2017;76(1):70-80. – 92. Gordon KB, Blauvelt A, Papp KA et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med. 2016; 375: 345-356. – 93. Griffiths CEM, Reich K, Lebwohl M, et al; UNCOVER-2 and UNCOVER-3 Investigators. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet. 2015;386(9993): 541-551. – 94. van de Kerkhof P, Guenther L, Gottlieb AB, et al. Ixekizumab treatment improves fingernail psoriasis in patients with moderate-to-severe psoriasis: results from the randomized, controlled and open-label phases of UNCOVER-3. J Eur Acad Dermatol Venereol. 2017;31(3):477-482. – 95. Saeki H, Nakagawa H, Nakajo K, et al. Efficacy and safety of ixekizumab treatment for Japanese patients with moderate to severe plaque psoriasis, erythrodermic psoriasis and generalized pustular psoriasis: results from a 52-week, open-label, phase 3 study (UNCOVER-J). J Dermatol. 2017; 44(4):355-362. – 96. Reich K, Leonardi C, Lebwohl M, et al. Sustained response with ixekizumab treatment of moderate-to-severe psoriasis with scalp involvement: results from three phase 3 trials (UNCOVER-1, UNCOVER-2, UNCOVER-3). J Dermatolog Treat. 2017;28(4):282-287. – 97. Freitas E, Blauvelt A, Torres T. Bimekizumab for the Treatment of Psoriasis. Drugs. 2021;81(15):1751-1762. – 98. Glatt S, Helmer E, Haier B et al. First-in-human randomized study of bimekizumab, a humanized monoclonal antibody and selective dual inhibitor of IL-17A and IL-17F, in mild psoriasis. Br J Clin Pharmacol. 2017; 83:991-1001. – 99. Gordon KB, Foley P, Krueger JG, et al. Bimekizumab efficacy and safety in moderate to severe plaque psoriasis (BE READY): a multicentre, double-blind, placebo-controlled, randomised withdrawal phase 3 trial. Lancet. 2021;397(10273):475–86. – 100. Warren RB, Blauvelt A, Bagel J, et al. Bimekizumab versus adalimumab in plaque psoriasis. N Engl J Med. 2021;385(2):130–41. – 101. Reich K, Papp KA, Blauvelt A, et al. Bimekizumab versus ustekinumab for the treatment of moderate to severe plaque psoriasis (BE VIVID): efficacy and safety from a 52-week, multicentre, double-blind, active comparator and placebo controlled phase 3 trial. Lancet. 2021;397(10273):487–98. – 102. Reich K, Warren RB, Lebwohl M, et al. Bimekizumab versus secukinumab in plaque psoriasis. N Engl J Med. 2021;385(2):142–52. – 103. Lebwohl M, Strober B, Menter A, et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 2015;373(14):1318-1328. – 104. Yamasaki K, Nakagawa H, Kubo Y, Ootaki K, Japanese Brodalumab Study Group. Efficacy and safety of brodalumab in patients with generalized pustular psoriasis and psoriatic erythroderma: results from a 52-week, open-label study. Br J Dermatol. 2017;176(3):741-751. – 105. Krueger JG, Kricorian G, Aras G et al. Brodalumab, an Anti-Interleukin-17-receptor antibody for psoriasis. N. Engl J Med. 2012; 366: 1181-1189. – 106. Reich K, Armstrong AW, Foley P, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double blind, placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol. 2017;76(3):418-431. – 107. Blauvelt A, Papp KA, Griffiths CE, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol. 2017;76(3):405-417. – 108. Norden A, Moon JY, Javadi SS et al. Anti-drug antibodies of IL-23 inhibitors for psoriasis: a systematic review. J Eur Acad Dermatol Venereol. 2022 Mar 5. – 109. Reich K, Papp KA, Blauvelt A, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390(10091): 276-288. – 110. Gordon KB, Strober B, Lebwohl M et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): Results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet. 2018; 392: 650-661. – 111. Blair HA. Risankizumab: A Review in Moderate to Severe Plaque Psoriasis. Drugs. 2020;80(12):1235-1245. – 112. Reich K, Gooderham M, Thaci D et al. Risankizumab compared with adalimumab in patients with moderate-to-severe plaque psoriasis (IMMvent): a randomised, double-blind, active-comparator-controlled phase 3 trial. Lancet. 2019;394(10198):576-586. – 113. Reich K, Rich P, Maari C et al. Efficacy and safety of mirikizumab (LY3074828) in he treatment of moderate-to-severe plaque psoriasis: Results from a randomized phase II study. Br J Dermatol. 2019; 181: 88-95. – 114. Marson JW, Snyder ML, Lebwohl MG. Newer Therapies in Psoriasis. Medical Clinics of North America. 2021; 105 (4): 627-641.
A közlemény célja, hogy bemutassa a hamis gyógyszer- és egészségügyi termékek által okozott egészségkárosodások azonosításának lehetőségeit, mely karakterisztikájáról és mértékéről a nemzetközi és hazai szakirodalomban nem, vagy csak elvétve található információ. Ennek következtében a klinikum számára is nehéz behatárolni a nemkívánatos gyógyszerhatások hamis készítményeknek tulajdonítható valószínűségét, hányadát. Célul tűztük ki, hogy megvizsgáljuk az elérhető nemzetközi szakirodalomban leírt, a nemzetközi adatbázisokba bejelentett hamis gyógyszereseteket és farmakovigilanciaadatokat, valamint a hazai bűnügyi statisztikákat is felhasználva azonosítjuk a leggyakoribb hatóanyagokat, a legjellemzőbb egészségkárosodásokat. A módszertan hazai adaptációjával és egy specifikus prospektív adatgyűjtési módszertan kidolgozásával a magyarországi esetek azonosítása is lehetővé válhat, mely korai felismerésükhöz és a betegek egészségkárosodásának, halálozásának elkerüléséhez is hozzájárulhat.
Kulcsszavak: gyógyszerhamisítás, egészségkárosodás
Potential tools to identify health consequences of falsified and substandard medications
Information on the health damages caused by counterfeit medicines and health care products is not, or only rarely found in the scientific literature. As a result, it is difficult to determine or describe to the clinical practice the extent and probability of drug related problems originated from these products and how to identify these harms in hospital setting.
The aim of the study is to assess the active pharmaceutical ingredients affected, the extent and characteristics of health consequences related to counterfeit medications based on the accessible product alerts and international pharmacovigilance data. In addition to the literature search, we reviewed the WHO Medical Products Alert publications in the last 20 years and collected adverse drug reactions indicating a counterfeit medicine in the WHO VigiAccess database. Furthermore, we analyzed the counterfeit medicine related adverse drug reactions in the U.S. FDA Adverse Events Reporting System (FAERS) database. Our study showed that pharmacovigilance and toxicovigilance data are suitable for the identification and detection of health damage caused by counterfeit drugs. With the national adaptation and the development of a specific prospective data collection methodology in the clinical setting, it may also be possible to identify cases in Hungary, which can be a leap forward the prevention of patients’ health damage and death related to these products. We believe that clinical pharmacists should play a more definite role in the adverse drug reaction identification and toxicovigilance.
Keywords: drug counterfeiting, health damage
Irodalom
1. Vajda P, Richter K, Bodrogi Z, Vida RG, Botz L, Kovács S, Zemplényi A, Bella R, Fittler A. Survey of workflow and cost implications of decommissioning regarding the Falsified Medicines Directive in Hungarian hospital pharmacies. BMJ Open. 2021 Nov 23;11(11):e047193. https://doi.org/10.1136/bmjopen-2020-047193 – 2. Funestrand H, Liu R, Lundin S, Troein M. Substandard and falsified medical products are a global public health threat. A pilot survey of awareness among physicians in Sweden. J Public Health (Oxf). 2019 Mar 1;41(1):e95-e102. https://doi.org/10.1093/pubmed/fdy092 – 3. WHO – Substandard and falsified medical products Elérhető: https://www.who.int/news-room/fact-sheets/detail/substandard-and-falsified-medical-products (Megjelenítve: 2021.09.03.) – 4. WHO – Report of the informal technical working group on draft working definitions of substandard/spurious/falsely labelled/falsified/counterfeit (SSFFC) medical products. Elérhető: https://apps.who.int/gb/sf/pdf_files/MSM5/A_MSM5_7-en.pdf (Megjelenítve: 2021.09.05.) – 5. WHO – Seventieth World Health Assembly update, 29 May 2017. Elérhető: https://www.who.int/news/item/29-05-2017-seventieth-world-health-assembly-update-29-may-2017 (Megjelenítve: 2021.09.04.) – 6. 2005. évi XCV. törvény az emberi alkalmazásra kerülő gyógyszerekről és egyéb, a gyógyszerpiacot szabályozó törvények módosításáról – 7. IDDO – Medical Product Alerts Elérhető: https://www.iddo.org/medicine-quality/medical-product-alerts (Megjelenítve: 2021.09.21) – 8. WHO – WHO Medical Product Alerts – Background Elérhető: https://www.who.int/teams/regulation-prequalification/incidents-and-SF/medical-product-alerts-background (Megjelenítve: 2021.09.22) – 9. FDA – Qlik Sense Elérhető: https://fis.fda.gov/sense/app/95239e26-e0be-42d9-a960-9a5f7f1c25ee/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis (Megjelenítve: 2021.10.30) – 10. FDA – Questions and Answers on FDA’s Adverse Event Reporting System (FAERS) Elérhető: https://www.fda.gov/drugs/surveillance/questions-and-answers-fdas-adverse-event-reporting-system-faers (Megjelenítve: 2021.10.30) – 11. VigiAccess Elérhető: http://www.vigiaccess.org (Megjelenítve: 2021.01.07) – 12. WHO – The WHO Programme for International Drug Monitoring Elérhető: https://www.who.int/teams/regulation-prequalification/regulation-and-safety/pharmacovigilance/health-professionals-info/pidm (Megjelenítve: 2022.01.10) – 13. Rahman MS, Yoshida N, Tsuboi H, Tomizu N, Endo J, Miyu O, Akimoto Y, Kimura K. The health consequences of falsified medicines- A study of the published literature. Trop Med Int Health. 2018 Dec;23(12):1294-1303. https://doi.org/10.1111/tmi.13161 – 14. Kumar B, Baldi A. The Challenge of Counterfeit Drugs: A Comprehensive Review on Prevalence, Detection and Preventive Measures. Curr Drug Saf. 2016;11(2):112-20. https://doi.org/10.2174/1574886310666151014114633 – 15. Juhlin K, Karimi G, Andér M, Camilli S, Dheda M, Har TS, Isahak R, Lee SJ, Vaughan S, Caduff P, Norén GN. Using VigiBase to Identify Substandard Medicines: Detection Capacity and Key Prerequisites. Drug Saf. 2015 Apr;38(4):373-82. https://doi.org/10.1007/s40264-015-0271-2 – 16. Fernandez, F.M., Green, M.D. and Newton, P.N. (2008) Prevalence and Detection of Counterfeit Pharmaceuticals: A Mini Review. Industrial and Engineering Chemical, 47, 585-590. https://doi.org/10.1021/ie0703787 – 17. Trippe ZA, Brendani B, Meier C, Lewis D. Identification of Substandard Medicines via Disproportionality Analysis of Individual Case Safety Reports. Drug Saf. 2017 Apr;40(4):293-303. https://doi.org/10.1007/s40264-016-0499-5
A természetes eredetű készítményeken, a klasszikus kismolekulájú hatóanyagokon, valamint a modern biologikumokon kívül a gyógyszerhatóanyagok ritkán emlegetett csoportját képezik az oligonukleotid alapú gyógyszerek. Ezen kevéssé ismert, de egyre növekvő jelentőségű gyógyszercsaládot szeretném bemutatni egy cikksorozatban. Az első részben a természetes nukleinsavak és szintetikus analógjaik kémiai és biológia tulajdonságait és felhasználási területeit, a másodikban pedig az antiszenz elven működő, transzlációgátló géncsendesítő gyógyszereket ismertettem. Ebben a részben az mRNS-érést befolyásoló oligonukleotidokat és ezek gyógyászati felhasználását mutatom be, remélve, hogy a gyakorló gyógyszerészek számára is hasznos és érdekes információkat sikerül összegyűjteni.
Kulcsszavak: géncsendesítők, mRNS-érést befolyásoló oligonukleotidok
Gene silencing medicines III: splicing modulating oligonucleotides
Besides natural compounds, classical small molecules and modern biologics, oligonucleotide-based drugs form a rarely mentioned group of pharmacons. I would like to present this lesser-known, but increasingly important family of medicines in a series of publications. In the first part, the chemistry, biological properties and use of natural oligonucleotides and their synthetic counterparts were discussed. In the second part, the translation blocking antisense compounds were summarized. In this article, I present the splice-switching oligonucleotides and their medicinal use, in order to provide useful information for pharmacists.
Keywords: gene silencing medicines, splice-switching oligonucleotides
Irodalom
1. Havens M.A, Hastings M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016;44:6549-6563. https://doi.org/10.1093/nar/gkw533 – 2. https://cdn.who.int/media/docs/default-source/international-nonproprietary-names-(inn)/bioreview-2016-final.pdf?sfvrsn=a25d2e1c_8 (2022.06.24.) – 3. Nan Y, Zhang Y. Antisense Phosphorodiamidate Morpholino Oligomers as Novel Antiviral Compounds. Front. Microbiol. 2018;9:article750 https://doi.org/10.3389/fmicb.2018.00750 – 4. Summerton J, Weller D. Morpholino Antisense Oligomers: Design, Preparation and Properties. Antisense Nucleic Acid Drug Dev. 1997;7:187-195. https://doi.org/10.1089/oli.1.1997.7.187 – 5. Baker B.F, Lot S.S, et al. 2’-O-(2-Methoxy)ethyl-modified Anti-intercellular Adhesion Molecule 1 (ICAM-1) Oligonucleotides Selectively Increase the ICAM-1 mRNA Level and Inhibit Formation of the ICAM-1 Translation Initiation Complex in Human Umbilical Vein Endothelial Cells. J. Biol. Chem. 1997;272:11944-12000. https://doi.org/10.1074/jbc.272.18.11994 – 6. Sheng L, Rigo F, et al. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acid Res. 2020;48:2853-2865. https://doi.org/10.1093/nar/gkaa126 – 7. Kinali M, Arechavala-Gomeza V, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8:918-928. https://doi.org/10.1016/S1474-4422(09)70211-X – 8. Lim K.R.Q, Maruyama R, et al. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Dev. Ther. 2017;11:533-545. https://doi.org/10.2147/DDDT.S97635 – 9. Alfano L.N, Charleston J.S, et al. Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy. Medicine, 2019;98:e15858. https://doi.org/10.1097/MD.0000000000015858 – 10. Dowling J.J. Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat. Rev. Neurology. 2016;675-676. https://doi.org/10.1038/nrneurol.2016.180 – 11. Aartsma-Rus A, Krieg A.M. FDA Approves Eteplirsen for Duchenne Muscular Dystrophy: The Next Chapter in the Eteplirsen Saga. Nucleic Acid Ther. 2017;27:1-3. https://doi.org/10.1089/nat.2016.0657 – 12. https://www.ema.europa.eu/en/documents/smop-initial/questions-answers-refusal-marketing-authorisation-exondys-eteplirsen-outcome-re-examination_en.pdf (2022.06.27.) – 13. Dzierlega K, Yokota T. Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy. Gene Ther. 2020;27:407-416. https://doi.org/10.1038/s41434-020-0156-6 – 14. Heo Y. Golodirsen: First Approval. Drugs. 2020;80:329-333. https://doi.org/10.1007/s40265-020-01267-2 https://doi.org/10.1007/s40265-020-01380-2 – 15. Aartsma-Rus A, Corey D.R. The 10th Oligonucleotide Therapy Approved: Golodirsen for Duchenne Muscular Dystrophy. Nucleic Acid Ther. 2020;30:67-70. https://doi.org/10.1089/nat.2020.0845 – 16. Matt S. Casimersen: First Approval. Drugs. 2021;81:875-879. https://doi.org/10.1007/s40265-021-01512-2 – 17. Dhillon S. Viltolarsen: First Approval. Drugs. 2020;80:1027-1031. https://doi.org/10.1007/s40265-020-01410-z https://doi.org/10.1007/s40265-020-01347-3 – 18. https://www.ema.europa.eu/en/documents/assessment-report/spinraza-epar-public-assessment-report_en.pdf (2022.06.30.) – 19. Neil E.E, Bisaccia E.K. Nusinersen: A Novel Antisense Oligonucleotide for the Treatment of Spinal Muscular Atrophy. J. Pediatr. Pharmacol. Ther. 2019;24:194-203. https://doi.org/10.5863/1551-6776-24.3.194 – 20. Albrechtsen S.S, Born A.P. et al. Nusinersen treatment of spinal muscular atrophy – a systematic review. Dan. Med. J. 2020;67:A02200100 – 21. Chiriboga C.A, Swoboda K.J. et al. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology. 2016;86:890-897. https://doi.org/10.1212/WNL.0000000000002445
Rozsnyay Mátyás Emlékverseny
Ismert tény, hogy Magyarország világelső az egy főre jutó alkoholbetegek számát tekintve. A 60 év feletti lakosság körében a legnagyobb az alkoholt fogyasztók aránya, sokan közülük akut vagy krónikus betegségekkel küzdenek, tehát nemcsak rendszeres alkohol-, de rendszeres gyógyszerfogyasztók is. Fontos kérdés tehát, hogy a szedett gyógyszerek felszívódását, hatását hogyan befolyásolja az alkohol. Dr. Erdélyi Lóránd Rozsnyay-díjat elnyert pályázata egyértelműen kimutatja, hogy az alkoholfogyasztás gyengíti a gyógyszerek hatékonyságát. Hogyan tovább?
Kulcsszavak: alkoholizmus, nem fertőző betegség, abszorpció, alkoholfogyasztás
Drinking alcohol with medication?
Hungary is world leader in the number of alcohol-related diseases per capita. The population over 60 has the highest proportion of alcohol consumers, many of whom live with noncommunicable diseases and are therefore not only regular drinkers but also regular users of alcohol and medicines. An important question is how alcohol affects the absorption and effects of the medicines taken. Dr Lóránd Erdélyi’s Rozsnyay Prize-winning study clearly shows that alcohol consumption weakens the effectiveness of medicines.
Keywords: alcoholism, noncommunicable diseases, absorption, alcohol consumption
BrAIN pályázat
A Wilson-kór kezelés nélkül fatális. A tüneteket az ATP7B gén mutációja következtében toxikus mértékben felhalmozott réz okozza. A betegség kezelésére a leginkább elterjedt gyógyszerek a kelátképzők. A mellékhatások miatt sokszor ezek nem alkalmazhatók. Ilyenkor indokolt a cinkkezelés.
A klinikai gyakorlatban nehézséget okoz a megfelelő cinksó bevitele, a hatékony gyógyszerforma alkalmazása.
A dolgozat célja egy olyan cinkkészítmény kifejlesztésének bemutatása, amivel a lehető legjobb biohasznosulást lehet elérni. A szerzők választása az egyenletes hatóanyag-leadású cink-acetát-tablettára esett, melyet a VIII. Magyar Gyógyszerkönyv alapján bevizsgáltak. A tabletta hatékonyságát retrospektív módon tanulmányozták.
Az általuk fejlesztett cinktablettával kedvező tapasztalatokat szereztek. Kelátképző ellenjavallat vagy intolerancia esetén a betegek laborértékei rendeződtek, rézanyagcseréjük egyensúlyban maradt. Kelátképző kezelést követően, a tünetmentes betegeknél fenntartó terápiaként alkalmazott cinkkezeléssel is tartani lehetett az egyensúlyt. Számos esetben első kezelésként alkalmazták a cink-acetát-tablettát, és nem is volt szükség kelátképzőre.
Összefoglalva, a szerzők által formulált tabletta alternatív terápia lehet a Wilson-kóros betegek kezelésére.
Kulcsszavak: Wilson-kór, cink-acetát-kezelés
Retrospective study of zinc acetate therapy in patients with Wilson’s disease
Wilson’s disease is fatal without treatment. Symptoms are caused by toxic accumulation of copper due to a mutation in the ATP7B gene. The most common drugs used to treat the disease are chelating agents. Often these cannot be used because of the side effects. In such cases, zinc treatment is justified.
In clinical practice, difficulties arise in finding the right zinc salt intake and the effective dosage form. Our aim was to develop a zinc formulation to achieve the best possible bioavailability. We chose a zinc acetate tablet with an uniform release of the active subtances, which was examined according to the VIII Hungarian Pharmacopoeia. The efficacy of the tablet was studied retrospectively. The experience with the zinc tablet developed by the authors, has been positive. In case of chelation contraindications or intolerance, patients’ laboratory values settled and their copper metabolism remained in balance. After chelation treatment, we were able to maintain the balance even with zinc treatment as maintenance therapy in asymptomatic patients. In many cases, zinc acetate tablets were given as a first treatment and chelation was not necessary.
In conclusion, the formulated tablets can be an alternative agent to treat Wilson’s disease patients.
Keywords: Wilson’s disease, zinc acetate therapy
Irodalom
1. Vetlény E, Rácz G, A réz élettani funkciója, a rézfelhalmozódás és a rézhiány kóroktani szerepe. Orv. Hetil. 2020;161:1488-1496 https://doi.org/10.1556/650.2020.31854 – 2. Huster D, Wilson-disease. Best Pract. Res. Clin. Gastroenterol. 2010;24:531-539 https://doi.org/10.1016/j.bpg.2010.07.014 – 3. Coss P, Nucaro A et al. Prenatal diagnosis of Wilson’s disease by analysis of DNA polymorphism. N Engl J Med 1992;416-25 – 4. Sohajda Z, Hódos M et al. Cornealis elváltozások Wilson-kórban. Orv. Hetil. 2019; 160:555-557 https://doi.org/10.1556/650.2019.31363 – 5. Weiss K.H, Thurik F et al. Efficacy and safety of oral chelators in treatment of patients with Wilson-disease. Clin. Gastroenterol. Hepatol. 2013;11:1028-1035 https://doi.org/10.1016/j.cgh.2013.03.012 – 6. Ferenci P. Wilson-Disease:Chelation Therapy: d-Penicillamine. Weiss k.H, Schilsky M szerk.Elsevier Inc. 2019;183-185 https://doi.org/10.1016/B978-0-12-811077-5.00016-5 – 7. Brewer G.J, Dick R.D et al. Treatment of Wilson’s disease with zinc XVI: Treatment during the pediatric years. J. Lab. Clin. Med. 2001;137:191-198 https://doi.org/10.1067/mlc.2001.113037 – 8. Brewer, G.J, Johnson V et al. Treatment of Wilson-disease with ammonium tetrathiomolybdate: II. Initial therapy in 33 neurologically affected patients and follow-up with zinc therapy. Arch. Neurol. 1996;53:1017-1025 https://doi.org/10.1001/archneur.1996.00550100103019 – 9. Wiggelinkhuizen M, Tilanus M.E.C et al. Systematic review: Clinical efficacy of chelator agents and zinc in the initial treatment of Wilson-disease. Aliment. Pharmacol. Ther. 2009; 29: 947-958 https://doi.org/10.1111/j.1365-2036.2009.03959.x – 10. Barber R.G, Grenier Z.A et al. Copper toxicity is not just oxidative damage: Zinc systems and insight from Wilson-disease. Biomedicines 2021;9, https://doi.org/10.3390/biomedicines9030316 – 11. Leigh A Anderson; Sara L Hakojarvi; Stacey K Boudreaux Zinc Acetate Treatment in Wilson’s Disease. Ann. Pharmacother. 1998;32:78-87. https://doi.org/10.1345/aph.17075
A védőoltásokkal kapcsolatos kérdések, kételyek alkalmazásuk kezdete óta megosztó elemek voltak a társadalomban és a közegészségügyben és nincs ez másképp napjainkban sem. Az elmúlt másfél év tragédiái és embert próbáló küzdelmei újra reflektorfénybe helyezték e kérdéseket, melyek a mai napig heves viták tárgyát képezik. „A védőoltások elfogadásának, illetve elutasításának háttértényezői” című cikkében a szerző azt a kérdéskört boncolgatta, hogy historikusan és a mai megváltozott körülmények között milyen az emberek és a társadalom hozzáállása a kérdéshez, hogyan változott ez a technológia fejlődésével és milyen eszközei lehetnek a szakmának a teljes elfogadás felé vezető úton.
Kulcsszavak: védőoltások, társadalmi elfogadás, visszautasítás
Vaccination – factors of acceptance and denial
Questions and doubts about vaccines have been a dividing issue in the society and public health since their application, which has not charged nowadays either. Tragedies and fights of the past 18 months have placed this question in the spotlight which is the subject of many heated discussions. In her works entitled “Vaccination – factors of acceptance and denial” the author submerged in the topic and tried to understand and publish the viewpoint of people and the society both historically and present times, different circumstances, discussing how these changed as a function of technological development and what professional tools may be available on the long way to full acceptance.
Keywords: vaccines, society acceptance, denial
Irodalom
1. Ferenci T.: Védőoltásokról a tények alapján. 2. javított, bővített kiadás. Budapest: Medicina könyvkiadó; 2016. – 2. Müller C, Bella F.: Oltásmegtagadás az egészségügyi hatóság szemszögéből Egészségtudomány 2016; 60/1 86-100 – 3. Mohai Zs., Pénzes M.: A kötelező védőoltásokkal szembeni ellenállás megjelenése a népegészségügyi hatósági ügyekben DOI: 10.29179/EgTud.2018.3-4/82-100 – 4. Valaszthato-oltas.hu – 5. Beszélgessünk az oltásokról mozgalom rendezvénye: Dr. Ébert Jenő belgyógyászhomeopata és Dr. Kürti Katalin gyermekgyógyász-homeopata értekezése – 6. Kun E., dr. Benedek A., dr. Mészner Zs.: Védőoltásokkal kapcsolatos kételyek és elkötelezettség a magyarországi egészségügyi alapellátásban dolgozók körében https://doi.org/10.1556/650.2019.31538 https://doi.org/10.1556/650.2019.31538 – 7. Janik L., Bodor Zs. Kanyaró a szomszédban doi: 10.29179/EgTud.2019.1-2/2-32 – 8. GlaxoSmithKline, Infanrix hexa Summary Bridging Report p.4. – 9. B. Deer: How the vaccine crisis was meant to make money https://doi.org/10.1136/bmj.c5258 – 10. K. M. Madsen, A. Hviid,et al.: A population based study of meals, mumps and rubella vaccination and autism https://doi.org/10.1056/NEJMoa021134 – 11. L. Smeeth, C. Cook, et al.: MMR vaccination and pervasive developmental disorders : a case- control study https://doi.org/10.1016/S0140-6736(04)17020-7 – 12. Celeste McGovern: A New Autoimmunity Syndrome Linked to Aluminium In Vaccines.Greenmedinfo. 2014. – 13. Dr. Jekkel Csilla: A vakcinológia alapjai c. előadás Epinfo 2016
Beszélgetősarok
Higyisán Ilona 1952. május 20-án született Csanádon (Csongrád megye). Magyarcsanádon egy határ melletti községben töltötte gyermekkorát. Kislányként állandóan méricskélt, meg akarta ismerni a mértékegységeket, tudni a mennyiségeket, mi a kevés és mi a sok? Már gyerekként érdekelték a természettudományok, imádta a biológiát, a kémiát, kereste a lehetőségeket, ahol az említett területek újdonságaival ismerkedhet. Szegeden szerzett gyógyszerészdiplomát, majd a későbbi évek során három szakvizsgát és gyógyszerügyi menedzser másoddiplomát. Kórházi gyógyszerészként 40 évig gyakorolta hivatását és saját bevallása szerint a munkája egyben a hobbija is.
Praxis
Hasi görcsök és puffadás esetén a betegek először gyakran a gyógyszerészhez fordulnak segítségért, ezért kiemelten fontos, hogy a panaszok mögött húzódó okokat fel tudjuk deríteni, és az állapotnak megfelelő gondozási tanácsokkal lássuk el a betegeket. Összefoglalónkban a tüneteket okozó gyakori probléma, az irritábilis bél szindróma (IBS) mellett a hatékony étkezési és életmódbeli tanácsokat, valamint a gyógyszeres terápia lehetőségeit mutatjuk be.
Kulcsszavak: hasi görcs, puffadás, fájdalom, IBS, FODMAP
Abdominal cramps and bloating
In case of abdominal cramps and bloating, patients often seek help from the pharmacist first. Therefore, it is really important for pharmacists to be able to identify the underlying cause of the problems, and provide pharmaceutical care accordingly. In our paper, we describe one of the common causes of the symptoms (irritable bowel syndrome, IBS), and summarise effective dietary and lifestyle changes, as well as pharmaceutical therapeutic options.
Keywords: abdominal cramps, bloating, pain, IBS, FODMAP
Irodalom
1. Hungin AP, Whorwell PJ, et al. The prevalence, patterns and impact of irritable bowel syndrome: an international survey of 40,000 subjects. Aliment Pharmacol Ther 2003; 17:643. – 2. Sayuk GS, Wolf R, et al. Comparison of Symptoms, Healthcare Utilization, and Treatment in Diagnosed and Undiagnosed Individuals With Diarrhea-Predominant Irritable Bowel Syndrome. Am J Gastroenterol 2017; 112:892. – 3. Longstreth GF, Thompson WG, et al. Functional bowel disorders. Gastroenterology 2006; 130:1480. – 4. Simren M, Palsson OS, Whitehead WE. Update on Rome IV Criteria for Colorectal Disorders: Implications for Clinical Practice. Curr Gastroenterol Rep 2017; 19:15. – 5. Manning AP, Thompson WG, et al. Towards positive diagnosis of the irritable bowel. Br Med J 1978; 2:653. – 6. https://theromefoundation.org/rome-iv/rome-iv-criteria/; 2022.10.13. – 7. https://www.uptodate.com/contents/treatment-of-irritable-bowel-syndrome-in-adults?search=functional%20abdominal%20pain%20disorder&source=search_result&selectedTitle=7~150&usage_type=default&display_rank=7; 2022.10.13. – 8. Böhn L, Störsrud S, Liljebo T, et al. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a randomized controlled trial. Gastroenterology 2015; 149:1399. – 9. Chey WD, Hashash JG, et al. AGA Clinical Practice Update on the Role of Diet in Irritable Bowel Syndrome: Expert Review. Gastroenterology 2022; 162:1737. – 10. Halmos EP, Power VA, et al. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 2014; 146:67. – 11. Shepherd SJ, Lomer MC, et al. Short-chain carbohydrates and functional gastrointestinal disorders. Am J Gastroenterol 2013; 108:707. – 12. Vasant DH, Paine PA, et al. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut 2021; 70:1214. – 13. Moayyedi P, Andrews CN, et al. Canadian Association of Gastroenterology Clinical Practice Guideline for the Management of Irritable Bowel Syndrome (IBS). J Can Assoc Gastroenterol 2019; 2:6. – 14. Yang J, Deng Y, et al. Prevalence and presentation of lactose intolerance and effects on dairy product intake in healthy subjects and patients with irritable bowel syndrome. Clin Gastroenterol Hepatol 2013; 11:262. – 15. Pinto-Sanchez MI, Nardelli A, Borojevic R, et al. Gluten-Free Diet Reduces Symptoms, Particularly Diarrhea, in Patients With Irritable Bowel Syndrome and Antigliadin IgG. Clin Gastroenterol Hepatol 2021; 19:2343. – 16. https://www.ema.europa.eu/en/documents/product-information/constella-epar-product-information_hu.pdf; 2022.10.13. – 17. https://ogyei.gov.hu/gyogyszeradatbazis&action=show_details&item=189496; 2022.10.13. – 18. Friis H, Bodé S, Rumessen JJ, Gudmand-Høyer E. Effect of simethicone on lactulose-induced H2 production and gastrointestinal symptoms. Digestion 1991; 49:227. – 19. Xie C, Tang Y, Wang Y, et al. Efficacy and Safety of Antidepressants for the Treatment of Irritable Bowel Syndrome: A Meta-Analysis. PLoS One 2015; 10:e0127815. – 20. Lembo A, Sultan S, Chang L, et al. AGA Clinical Practice Guideline on the Pharmacological Management of Irritable Bowel Syndrome With Diarrhea. Gastroenterology 2022; 163:137. – 21. https://ogyei.gov.hu/gyogyszeradatbazis&action=show_details&item=172324; 2022.10.13. – 22. https://journals.lww.com/ajg/fulltext/2021/01000/acg_clinical_guideline__management_of_irritable.11.aspx; 2022.10.13. – 23. https://pubmed.ncbi.nlm.nih.gov/30294792/; 2022.10.13.
A bélben élő baktériumok különféle kórképekkel való kapcsolatának elemzése intenzív vizsgálatok tárgyát képezte az elmúlt évtizedben. Azonban, kevesebb ismeretanyagunk van az epefolyadék-mikrobiomról, és annak a különféle kórképekkel összefüggésben történő változásairól.
Kulcsszavak: bélben élő baktériumok, epehólyag, epefolyadék-mikrobiom
Not only the intestine, but also the gall bladder has a bacterial flora
The analysis of the relationship between the intestinal bacteria and various diseases has been the subject of intensive studies in the last decade. However, we have less knowledge about the bile fluid microbiome and its changes in connection with various diseases.
Keywords: intestinal bacteria, gall-bladder, bile fluid microbiome
Irodalom
1. Molinero N. et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 2019;7:100.
A mozgásszervi fájdalmak és gyulladások kezelésében vezető szerepet töltenek be a lokálisan alkalmazott nem szteroid gyulladáscsökkentők.
Kulcsszavak: nem szteroid gyulladáscsökkentők, mozgásszervi fájdalmak
Externally applied NSAID active ingredient
Locally applied nonsteroidal anti-inflammatory drugs play a leading role in the treatment of musculoskeletal pain and inflammation.
Keywords: nonsteroidal anti-inflammatory drugs, locomotor pains
Irodalom
1. Marinho ODS, Pereira A. Clinical Efficacy and Safety Profile of Topical Etofenamate in the Treatment of Patients with Musculoskeletal Disorders: A Systematic Review. Pain Ther. 2020;9:393–410. – 2. www.ogyei.gov.hu; alkalmazási előírások